The Effect of Different Sintering Protocols on the Mechanical and Microstructural Properties of Two Multilayered Zirconia Ceramics: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Used
2.2. Specimen Preparation
- ▪
- YML-7 h (YML sintered for 7 h)
- ▪
- YML-54 min (YML sintered for 54 min)
- ▪
- YML-51 min (YML sintered for 51 min)
- ▪
- UTML-7 h (UTML sintered for 7 h)
- ▪
- UTML-54 min (UTML sintered for 54 min)
- ▪
- UTML-51 min (UTML sintered for 51 min)
2.3. Sintering Protocols
- •
- Heating from room temperature to 1550 °C at 10 °C/min
- •
- Holding at 1550 °C for 2 h
- •
- Cooling to room temperature at −10 °C/min
- •
- Heating from room temperature to 1450 °C at a rate of 120 °C/min
- •
- Then to 1600 °C at 10 °C/min
- •
- Holding at 1600 °C for 20 min
- •
- Cooling to 800 °C at −120 °C/min
- •
- Heating from room temperature to 1400 °C at 50 °C/min
- •
- Then to 1500 °C at 24 °C/min
- •
- Then to 1560 °C at 24 °C/min
- •
- No holding time
- •
- Cooling according to automatic program schedule (manufacturer default)
2.4. Flexural Strength Testing
2.5. SEM and Grain Size Analysis
2.6. EDS Analysis
2.7. XRD Analysis
2.8. Statistical Analysis
3. Results
3.1. Flexural Strength Results
3.2. SEM and Grain Size Results
3.3. EDS Results
3.4. XRD Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Leib, E.W.; Vainio, U.; Pasquarelli, R.M.; Kus, J.; Czaschke, C.; Walter, N.; Janssen, R.; Müller, M.; Schreyer, A.; Weller, H.; et al. Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres. J. Colloid Interface Sci. 2015, 448, 582–592. [Google Scholar] [CrossRef]
- Kongkiatkamon, S.; Rokaya, D.; Kengtanyakich, S.; Peampring, C. Current classification of zirconia in dentistry: An updated review. PeerJ 2023, 11, e15669. [Google Scholar] [CrossRef] [PubMed]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Lim, C.H.; Vardhaman, S.; Reddy, N.; Zhang, Y. Composition, processing, and properties of biphasic zirconia bioceramics: Relationship to competing strength and optical properties. Ceram. Int. 2022, 48, 17095–17103. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Suliman, A.A.; Abdulmajeed, A.A.; Zhang, Y. Zirconia restoration types, properties, tooth preparation design, and bonding. A narrative review. J. Esthet. Restor. Dent. 2024, 36, 78–84. [Google Scholar] [CrossRef]
- Öztürk, C.; Can, G. Effect of Sintering Parameters on the Mechanical Properties of Monolithic Zirconia. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Cokic, S.M.; Vleugels, J.; Van Meerbeek, B.; Camargo, B.; Willems, E.; Li, M.; Zhang, F. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent. Mater. 2020, 36, 959–972. [Google Scholar] [CrossRef]
- Ersoy, N.M.; Aydoğdu, H.M.; Değirmenci, B.Ü.; Çökük, N.; Sevimay, M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater. Odontol. Scand. 2015, 1, 43–50. [Google Scholar] [CrossRef]
- Kaizer, M.R.; Gierthmuehlen, P.C.; dos Santos, M.B.; Cava, S.S.; Zhang, Y. Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics. Ceram. Int. 2017, 43, 10999–11005. [Google Scholar] [CrossRef]
- Juntavee, N.; Attashu, S. Effect of different sintering process on flexural strength of translucency monolithic zirconia. J. Clin. Exp. Dent. 2018, 10, e821–e830. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Özcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H.F. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin. Oral. Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.A.; Radwan, M.; Blunt, L.; Bills, P.; Tawfik, A.; Arafa, A.M. Effect of different sintering protocols on the fracture strength of 3-unit monolithic gradient zirconia fixed partial dentures: An in vitro study. J. Prosthet. Dent. 2023, 130, 908.e1–908.e8. [Google Scholar] [CrossRef]
- Gómez, S.Y.; Da Silva, A.L.; Gouvêa, D.; Castro, R.H.R.; Hotza, D. Nanocrystalline yttria-doped zirconia sintered by fast firing. Mater. Lett. 2016, 166, 196–200. [Google Scholar] [CrossRef]
- Strasser, T.; Wertz, M.; Koenig, A.; Koetzsch, T.; Rosentritt, M. Microstructure, composition, and flexural strength of different layers within zirconia materials with strength gradient. Dent. Mater. 2023, 39, 463–468. [Google Scholar] [CrossRef] [PubMed]
- ISO 6872:2015; Dentistry—Ceramic Materials. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/59936.html (accessed on 23 February 2025).
- Ebeid, K.; Wille, S.; Hamdy, A.; Salah, T.; El-Etreby, A.; Kern, M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent. Mater. 2014, 30, e419–e424. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Ender, A.; Mehl, A. Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness. Oper. Dent. 2020, 45, 219–226. [Google Scholar] [CrossRef]
- Kim, M.J.; Ahn, J.S.; Kim, J.H.; Kim, H.Y.; Kim, W.C. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J. Adv. Prosthodont. 2013, 5, 161–166. [Google Scholar] [CrossRef]
- Liu, H.; Inokoshi, M.; Nozaki, K.; Shimizubata, M.; Nakai, H.; Too, T.D.C.; Minakuchi, S. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent. Mater. 2022, 38, 451–468. [Google Scholar] [CrossRef]
- Attachoo, S.; Juntavee, N. Role of sintered temperature and sintering time on spectral translucence of nano-crystal monolithic zirconia. J. Clin. Exp. Dent. 2019, 11, e146–e153. [Google Scholar] [CrossRef]
- Mayinger, F.; Pfefferle, R.; Reichert, A.; Stawarczyk, B. Impact of High-Speed Sintering of Three-Unit 3Y-TZP and 4Y-TZP Fixed Dental Prostheses on Fracture Load With and Without Artificial Aging. Int. J. Prosthodont. 2021, 34, 47–53. [Google Scholar] [CrossRef]
- Bravo-Leon, A.; Morikawa, Y.; Kawahara, M.; Mayo, M.J. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 2002, 50, 4555–4562. [Google Scholar] [CrossRef]
- Inokoshi, M.; Zhang, F.; De Munck, J.; Minakuchi, S.; Naert, I.; Vleugels, J.; Van Meerbeek, B.; Vanmeensel, K. Influence of sintering conditions on low-temperature degradation of dental zirconia. Dent. Mater. 2014, 30, 669–678. [Google Scholar] [CrossRef]
- Ahmed, W.M.; Troczynski, T.; McCullagh, A.P.; Wyatt, C.C.L.; Carvalho, R.M. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J. Esthet. Restor. Dent. 2019, 31, 423–430. [Google Scholar] [CrossRef]
- Jansen, J.U.; Lümkemann, N.; Letz, I.; Pfefferle, R.; Sener, B.; Stawarczyk, B. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials. J. Prosthet. Dent. 2019, 122, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Elisa Kauling, A.; Güth, J.F.; Erdelt, K.; Edelhoff, D.; Keul, C. Influence of speed sintering on the fit and fracture strength of 3-unit monolithic zirconia fixed partial dentures. J. Prosthet. Dent. 2020, 124, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Michailova, M.; Elsayed, A.; Fabel, G.; Edelhoff, D.; Zylla, I.M.; Stawarczyk, B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J. Mech. Behav. Biomed. Mater. 2020, 111, 103977. [Google Scholar] [CrossRef] [PubMed]
- Hjerppe, J.; Närhi, T.; Fröberg, K.; Vallittu, P.K.; Lassila, L.V.J. Effect of shading the zirconia framework on biaxial strength and surface microhardness. Acta Odontol. Scand. 2008, 66, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Oyar, P.; Durkan, R.; Deste, G. Effects of sintering time and hydrothermal aging on the mechanical properties of monolithic zirconia ceramic systems. J. Prosthet. Dent. 2021, 126, 688–691. [Google Scholar] [CrossRef]
- Rosentritt, M.; Preis, V.; Schmid, A.; Strasser, T. Multilayer zirconia: Influence of positioning within blank and sintering conditions on the in vitro performance of 3-unit fixed partial dentures. J. Prosthet. Dent. 2022, 127, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.; Kern, M. Influence of cyclic loading and luting agents on the fracture load of two all-ceramic crown systems. J. Prosthet. Dent. 2004, 92, 551–556. [Google Scholar] [CrossRef]
- Inokoshi, M.; Liu, H.; Yoshihara, K.; Yamamoto, M.; Tonprasong, W.; Benino, Y.; Minakuchi, S.; Vleugels, J.; Van Meerbeek, B.; Zhang, F. Layer characteristics in strength-gradient multilayered yttria-stabilized zirconia. Dent. Mater. 2023, 39, 430–441. [Google Scholar] [CrossRef]
- Pekkan, G.; Pekkan, K.; Bayindir, B.Ç.; Özcan, M.; Karasu, B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent. Mater. J. 2020, 39, 1–8. [Google Scholar] [CrossRef]
- Katada, H.; Inokoshi, M.; Kamijo, S.; Liu, H.; Xu, K.; Kawashita, M.; Yokoi, T.; Shimabukuro, M.; Minakuchi, S. Effects of multiple firings on the translucency, crystalline phase, and mechanical strength of highly translucent zirconia. Dent. Mater. J. 2024, 43, 294–302. [Google Scholar] [CrossRef]
- Güntekin, N.; Kızılırmak, B.; Tunçdemir, A.R. Comparison of Mechanical and Optical Properties of Multilayer Zirconia After High-Speed and Repeated Sintering. Materials 2025, 18, 1493. [Google Scholar] [CrossRef]
- Novitskaya, E.; Karandikar, K.; Cummings, K.; Mecartney, M.; Graeve, O.A. Hall–Petch effect in binary and ternary alumina/zirconia/spinel composites. J. Mater. Res. Technol. 2021, 11, 823–832. [Google Scholar] [CrossRef]
- Nonaka, K.; Teramae, M.; Pezzotti, G. Effect of rapid cooling on residual stress and surface fracture toughness of dental zirconia. J. Mech. Behav. Biomed. Mater. 2024, 157, 106656. [Google Scholar] [CrossRef] [PubMed]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Kovbasiuk, T.; Lyutyy, P.; Vira, V.; Vavrukh, V. ACTA PHYSICA POLONICA A Effect of Sintering Temperature on Crack Growth Resistance Characteristics of Yttria-Stabilized Zirconia. Acta Phys. Pol. A 2022, 141, 323–327. [Google Scholar] [CrossRef]







| Material | Trade Name | LOT No | Manufacturer | Y2O3 Content (Nominal) |
|---|---|---|---|---|
| Layered Monolithic Zirconia | KATANA™ YML (18 mm, NW) | EİTAY | Kuraray Noritake Dental Inc., Japan | Multilayer: dentin ≈ 3Y; transition ≈ 4Y; enamel ≈ 5Y |
| Layered Monolithic Zirconia | KATANA™ UTML (18 mm, ENW) | ENCJF | Kuraray Noritake Dental Inc., Japan | Uniform: ≈ 5Y |
| Material | 7 h | 54 min | 51 min | Overall | Time- Based | ||||
|---|---|---|---|---|---|---|---|---|---|
| (n = 28) | (n = 28) | (n = 28) | (n = 86) | ||||||
| Mean | SS | Mean | SS | Mean | SS | Mean | SS | p ** (F) | |
| YML (n = 42) | 828.8 | 182.4 | 916.7 | 209.6 | 845.0 | 249.8 | 863.5 | 213.9 | 0.741 |
| (−0.30) | |||||||||
| UTML (n = 42) | 531.8 | 160.3 | 574.9 | 150.7 | 583.7 | 108.9 | 563.5 | 140.1 | 0.435 |
| (−0.86) | |||||||||
| Overall (n = 84) | 680.3 | 226.4 | 745.8 | 249.8 | 714.3 | 231.2 | 713.5 | 234.7 | 0.532 |
| (−0.64) | |||||||||
| Material based p * (t) | 0.00 (−4.83) | 0.00 (−4.32) | 0.00 (−3.59) | 0.00 (−7.45) | |||||
| Material | 7 h (n = 20) | 54 min (n = 20) | 51 min (n = 12) | Overall (n = 60) | Time- Based | ||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SS | Mean | SS | Mean | SS | Mean | SS | p ** (F) | |
| YML (n = 30) | a 644.2 | 146.5 | b 234.2 | 128.4 | c 406.8 | 107.0 | 428.4 | 211.1 | 0.000 (25.75) |
| UTML (n = 30) | a 620.9 | 80.1 | b 375.5 | 116.6 | bc 386.8 | 115.5 | 461.1 | 153.6 | 0.000 (17.21) |
| Overall (n = 60) | a 632.6 | 115.5 | b 304.8 | 139.6 | bc 396.8 | 108.8 | 444.7 | 183.8 | 0.001 (37.63) |
| Material based p * (t) | 0.665 (0.441) | 0.019 (−2.578) | 0.692 (0.402) | 0.496 (−0.686) | |||||
| Material | Sintering Duration | Zr (%) | Y (%) | O (%) |
|---|---|---|---|---|
| YML | 7 h | 79.06 | 7.21 | 13.73 |
| YML | 54 min | 76.51 | 9.56 | 13.93 |
| YML | 51 min | 76.56 | 9.07 | 14.37 |
| UTML | 7 h | 77.43 | 9.97 | 12.60 |
| UTML | 54 min | 75.43 | 10.32 | 14.25 |
| UTML | 51 min | 76.04 | 10.27 | 13.69 |
| Material | Sintering Duration | Tetragonal (%) | Cubic (%) |
|---|---|---|---|
| UTML | 7 h | 23 ± 2 | 77 ± 2 |
| UTML | 54 min | 35 ± 2 | 65 ± 2 |
| UTML | 51 min | 8 ± 2 | 92 ± 2 |
| YML | 7 h | 61.2 ± 0.9 | 38.8 ± 0.9 |
| YML | 54 min | 56.3 ± 1.1 | 43.7 ± 1.1 |
| YML | 51 min | 46 ± 1 | 54 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatrash, L.; Nalbant, A.D. The Effect of Different Sintering Protocols on the Mechanical and Microstructural Properties of Two Multilayered Zirconia Ceramics: An In Vitro Study. Inorganics 2025, 13, 366. https://doi.org/10.3390/inorganics13110366
Alatrash L, Nalbant AD. The Effect of Different Sintering Protocols on the Mechanical and Microstructural Properties of Two Multilayered Zirconia Ceramics: An In Vitro Study. Inorganics. 2025; 13(11):366. https://doi.org/10.3390/inorganics13110366
Chicago/Turabian StyleAlatrash, Lana, and Asude Dilek Nalbant. 2025. "The Effect of Different Sintering Protocols on the Mechanical and Microstructural Properties of Two Multilayered Zirconia Ceramics: An In Vitro Study" Inorganics 13, no. 11: 366. https://doi.org/10.3390/inorganics13110366
APA StyleAlatrash, L., & Nalbant, A. D. (2025). The Effect of Different Sintering Protocols on the Mechanical and Microstructural Properties of Two Multilayered Zirconia Ceramics: An In Vitro Study. Inorganics, 13(11), 366. https://doi.org/10.3390/inorganics13110366
