Metalloamination/Cyclization of Zinc(II) Amides Derived from N,N-Dimethylhydrazinoalkenes—Applications for the Direct C-SP2 Functionalization of Aryl and Vinyl Electrophiles
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Representative Experimental Procedures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef]
- Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett. 2015, 56, 3075–3081. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among US FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Chemler, S.R. The enantioselective intramolecular aminative functionalization of unactivated alkenes, dienes, allenes and alkynes for the synthesis of chiral nitrogen heterocycles. Org. Biomol. Chem. 2009, 7, 3009–3019. [Google Scholar] [CrossRef]
- Nanda, S.K.; Mallik, R. Transition Metal-Catalyzed Carboamination of Alkenes and Allenes: Recent Progress. Asian J. Org. Chem. 2022, 11, 41–65. [Google Scholar] [CrossRef]
- Redford, J.E.; McDonald, R.I.; Rigsby, M.L.; Wiensch, J.D.; Stahl, S.S. Stereoselective Synthesis of cis-2,5-Disubstituted Pyrrolidines via Wacker-Type Aerobic Oxidative Cyclization of Alkenes with tert-Butanesulfinamide Nucleophiles. Org. Lett. 2012, 14, 1242–1245. [Google Scholar] [CrossRef]
- Nicolai, S.; Waser, J. Pd(0)-Catalyzed Oxy- and Aminoalkynylation of Olefins for the Synthesis of Tetrahydrofurans and Pyrrolidines. Org. Lett. 2011, 13, 6324–6327. [Google Scholar] [CrossRef]
- Sunsdahl, B.; Smith, A.R.; Livinghouse, T. Intramolecular Metalloamination of N,N-Dimethylhydrazinoalkenes: A Versatile Method to Access Functionalized Piperidines and Pyrrolidines. Angew. Chem.-Int. Ed. 2014, 53, 14352–14356. [Google Scholar] [CrossRef]
- Mickelsen, K.; Zabawa, S.; Livinghouse, T. Diethylzinc-Mediated Metalloamination-Alkylation of N,N-Dimethylhydrazinoalkenes. Catalysis of C-Zn Alkylation Using Simple Cu(I) Salts. Synlett 2018, 29, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Frabitore, C.; Lepeule, J.; Towey, B.; Livinghouse, T.; Robinson, W.C. Efficient Reductions of Dimethylhydrazones using Preformed Primary Amine Boranes. Synth. Commun. 2022, 52, 185–189. [Google Scholar] [CrossRef]
- Frabitore, C.; Lepeule, J.; Livinghouse, T. Copper(I)-Catalyzed Cross-Coupling of 1-Bromoalkynes with N-Heterocyclic Organozinc Reagents. Molecules 2022, 27, 4561. [Google Scholar] [CrossRef]
- Frabitore, C.; Livinghouse, T. On the Copper(I)-Catalyzed Cross-Coupling of 1-Bromoalkynes with N-Heterocyclic Organozinc Reagents: Substrate Scope and Catalyst Evaluation. Synth.-Stuttg. 2023, 55, 2370–2376. [Google Scholar] [CrossRef]
- Zhou, J.R.; Fu, G.C. Palladium-catalyzed Negishi cross-coupling reactions of unactivated alkyl iodides, bromides, chlorides, and tosylates. J. Am. Chem. Soc. 2003, 125, 12527–12530. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, K.; Serizawa, H.; Ishii, K.; Mikami, K. Palladium-Catalyzed Negishi Cross-Coupling Reaction of Aryl Halides with (Difluoromethyl)zinc Reagent. Org. Lett. 2016, 18, 3690–3693. [Google Scholar] [CrossRef]
- Han, C.; Buchwald, S.L. Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides. J. Am. Chem. Soc. 2009, 131, 7532–7533. [Google Scholar] [CrossRef]
- Yang, Y.; Oldenhuis, N.J.; Buchwald, S.L. Mild and General Conditions for Negishi Cross-Coupling Enabled by the Use of Palladacycle Precatalysts. Angew. Chem.-Int. Ed. 2013, 52, 615–619. [Google Scholar] [CrossRef]
- Gong, H.G.; Gagne, M.R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 2008, 130, 12177–12183. [Google Scholar] [CrossRef]
- Schley, N.D.; Fu, G.C. Nickel-Catalyzed Negishi Arylations of Propargylic Bromides: A Mechanistic Investigation. J. Am. Chem. Soc. 2014, 136, 16588–16593. [Google Scholar] [CrossRef]
- Cooper, A.K.; Burton, P.M.; Nelson, D.J. Nickel versus Palladium in Cross-Coupling Catalysis: On the Role of Substrate Coordination to Zerovalent Metal Complexes. Synth.-Stuttg. 2020, 52, 565–573. [Google Scholar] [CrossRef]
- Johns, A.M.; Utsunomiya, M.; Incarvito, C.D.; Hartwig, J.F. A highly active palladium catalyst for intermolecular hydroamination. Factors that control reactivity and additions of functionalized anilines to dienes and vinylarenes. J. Am. Chem. Soc. 2006, 128, 1828–1839. [Google Scholar] [CrossRef]
- Birkholz, M.N.; Freixa, Z.; van Leeuwen, P. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions. Chem. Soc. Rev. 2009, 38, 1099–1118. [Google Scholar] [CrossRef]
- Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Recent advances in homogeneous nickel catalysis. Nature 2014, 509, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Hazari, N.; Melvin, P.R.; Beromi, M.M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 2017, 1, 0025. [Google Scholar] [CrossRef]
- Day, C.S.; Somerville, R.J.; Martin, R. Deciphering the dichotomy exerted by Zn(ii) in the catalytic sp(2) C-O bond functionalization of aryl esters at the molecular level. Nat. Catal. 2021, 4, 124–133. [Google Scholar] [CrossRef]
- Nicolai, S.; Sedigh-Zadeh, R.; Waser, J. Pd(0)-Catalyzed Alkene Oxy- and Aminoalkynylation with Aliphatic Bromoacetylenes. J. Org. Chem. 2013, 78, 3783–3801. [Google Scholar] [CrossRef]
- Maret, W. Zinc and sulfur: A critical biological partnership. Biochemistry 2004, 43, 3301–3309. [Google Scholar] [CrossRef]
- Espino, G.; Kurbangalieva, A.; Brown, J.M. Aryl bromide/triflate selectivities reveal mechanistic divergence in palladium-catalysed couplings; the Suzuki-Miyaura anomaly. Chem. Commun. 2007, 17, 1742–1744. [Google Scholar] [CrossRef]
- Gauvin, R.M.; Buch, F.; Delevoye, L.; Harder, S. Well-Defined Silica-Supported Calcium Reagents: Control of Schlenk Equilibrium by Grafting. Chem.-A Eur. J. 2009, 15, 4382–4393. [Google Scholar] [CrossRef]
- Smith, L.M.; Coward, K.M.; Jones, A.C.; Bickley, J.F.; Steiner, A.; Petroni, S.; Roberts, J.S. Purification of dialkylzinc precursors using tertiary amine ligands. J. Electron. Mater. 2001, 30, 1433–1437. [Google Scholar] [CrossRef]
- Dekker, J.; Boersma, J.; Fernholt, L.; Haaland, A.; Spek, A.L. Molecular Structure of Bis(3-(Dimethylamino)propyl)zinc, Zn (CH2)3N(CH3)2)2, by X-ray and Gas Electron-Diffraction and Bis(3-Mercapto)zinc, Zn (CH2)3SCH3)2, by Gas Electron-Diffraction. Organometallics 1987, 6, 1202–1206. [Google Scholar] [CrossRef]
- Eckert, P.; Organ, M.G. The Role of LiBr and ZnBr2 on the Cross-Coupling of Aryl Bromides with Bu2Zn or BuZnBr. Chem.-A Eur. J. 2019, 25, 15751–15754. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.J.; Shannon, J.; Stephens, J.C.; Woodward, S. Demonstration of promoted zinc schlenk equilibria, their equilibrium values and derived reactivity. Chem.-A Eur. J. 2007, 13, 2462–2472. [Google Scholar] [CrossRef]
- Dessy, R.E.; Coe, G.R. Structure of Organozinc Reagents. J. Org. Chem. 1963, 28, 3592–3593. [Google Scholar] [CrossRef]
- Abraham, M.H.; Rolfe, P.H. Organometallic Compounds 4. Constitution of Ethylzinc Halides. J. Organomet. Chem. 1967, 7, 35–43. [Google Scholar] [CrossRef]
- Yalkowsky, S.H. Carnelley’s Rule and the Prediction of Melting Point. J. Pharm. Sci. 2014, 103, 2629–2634. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. CStructural Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- APEX4, Software Suite V2022. 1-1; Bruker AXS Inc.: Madison, WI, USA, 2022.
Entry | Catalyst | Et2Zn Consumption 1 [%] | Yield 2 [%] |
---|---|---|---|
1 | Ni(cod)2 | 46 | 16 |
2 | NiCl2(DME) | 44 | 2 |
3 | NiBr2 | 23 | 0 |
4 | NiCl2(DPPF) | 35 | 29 |
5 | Pd2(dba)3 | 24 | 3 |
6 | Pd(OAc)2 | 100 | 11 |
7 | PdCl2(PPh3)2 | 50 | 13 |
8 | PdCl2(DPPF) | 58 | 47 |
9 | PdCl2(DPEphos) | 100 | 77 |
10 | PdCl2(Xantphos) | 100 | 69 |
Intermediate | Electrophile | Product | Yield [%] | Intermediate | Electrophile | Product | Yield [%] |
---|---|---|---|---|---|---|---|
4 | 7a a | 92 | 5 | 8a | 83 | ||
7b a | 71 | 8b | 86 | ||||
7c a | 73 (78) b | 8c | 60 (64) b | ||||
7d a | 66 | 8d | 85 | ||||
7e a | 69 | 8e | 81 | ||||
7f a | 77 | 6 | 9a | 39 c | |||
7g a | 65 | 9b | 45 c | ||||
7h a | 61 | 9c | 58 c | ||||
9d | 31 c | ||||||
9e | 72 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lépeule, J.; Frabitore, C.; Livinghouse, T. Metalloamination/Cyclization of Zinc(II) Amides Derived from N,N-Dimethylhydrazinoalkenes—Applications for the Direct C-SP2 Functionalization of Aryl and Vinyl Electrophiles. Inorganics 2025, 13, 328. https://doi.org/10.3390/inorganics13100328
Lépeule J, Frabitore C, Livinghouse T. Metalloamination/Cyclization of Zinc(II) Amides Derived from N,N-Dimethylhydrazinoalkenes—Applications for the Direct C-SP2 Functionalization of Aryl and Vinyl Electrophiles. Inorganics. 2025; 13(10):328. https://doi.org/10.3390/inorganics13100328
Chicago/Turabian StyleLépeule, Jérome, Christian Frabitore, and Tom Livinghouse. 2025. "Metalloamination/Cyclization of Zinc(II) Amides Derived from N,N-Dimethylhydrazinoalkenes—Applications for the Direct C-SP2 Functionalization of Aryl and Vinyl Electrophiles" Inorganics 13, no. 10: 328. https://doi.org/10.3390/inorganics13100328
APA StyleLépeule, J., Frabitore, C., & Livinghouse, T. (2025). Metalloamination/Cyclization of Zinc(II) Amides Derived from N,N-Dimethylhydrazinoalkenes—Applications for the Direct C-SP2 Functionalization of Aryl and Vinyl Electrophiles. Inorganics, 13(10), 328. https://doi.org/10.3390/inorganics13100328