Getting to the Heart of the Matter: Control over the Photolysis of PbI2 Through Partial Lead Substitution
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Preparation of the PbI2 and Pb0.95M0.1/nI2 Films
3.2.1. Substrate Preparation
3.2.2. Preparation of Precursor Solutions Based on Lead Iodide
3.2.3. Deposition of the Films Based on Lead Iodide
3.3. Photostability Testing
3.4. Pb0.95M0.1/nI2 Film Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hinken, D.; Rauer, M.; Hohl-Ebinger, J.; Hao, X. Solar Cell Efficiency Tables (Version 64). Prog. Photovolt. Res. Appl. 2024, 32, 425–441. [Google Scholar] [CrossRef]
- Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-Generation Applications for Integrated Perovskite Solar Cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Romano, V.; Agresti, A.; Verduci, R.; D’Angelo, G. Advances in Perovskites for Photovoltaic Applications in Space. ACS Energy Lett. 2022, 7, 2490–2514. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hu, W.; Liu, J.; Han, C.; Gao, Q.; Mei, A.; Zhou, Y.; Guo, F.; Han, H. Achievements, Challenges, and Future Prospects for Industrialization of Perovskite Solar Cells. Light Sci. Appl. 2024, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Biju, V.P.; Qi, Y.; Chen, W.; Liu, Z. Recent Progress in the Development of High-Efficiency Inverted Perovskite Solar Cells. NPG Asia Mater. 2023, 15, 27. [Google Scholar] [CrossRef]
- Zhu, H.; Teale, S.; Lintangpradipto, M.N.; Mahesh, S.; Chen, B.; McGehee, M.D.; Sargent, E.H.; Bakr, O.M. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 2023, 8, 569–586. [Google Scholar] [CrossRef]
- Zhang, D.; Li, D.; Hu, Y.; Mei, A.; Han, H. Degradation Pathways in Perovskite Solar Cells and How to Meet International Standards. Commun. Mater. 2022, 3, 58. [Google Scholar] [CrossRef]
- Akbulatov, A.F.; Frolova, L.A.; Dremova, N.N.; Zhidkov, I.; Martynenko, V.M.; Tsarev, S.A.; Luchkin, S.Y.; Kurmaev, E.Z.; Aldoshin, S.M.; Stevenson, K.J.; et al. Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions? J. Phys. Chem. Lett. 2020, 11, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Raza, H.; Zhang, Z.; Chen, W.; Liu, Z. Rethinking the Role of Excess/Residual Lead Iodide in Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2215171. [Google Scholar] [CrossRef]
- Ren, F.; Xiang, H.; Zhao, K.; Liu, C. Impacts of PbI2 on High-Efficiency Perovskite Solar Cells: Exploring Intercalation Orientations and Defects. J. Mater. Chem. C 2023, 11, 13281–13289. [Google Scholar] [CrossRef]
- Ma, Z.; Huang, D.; Liu, Q.; Yan, G.; Xiao, Z.; Chen, D.; Zhao, J.; Xiang, Y.; Peng, C.; Li, H.; et al. Excess PbI2 Evolution for Triple-Cation Based Perovskite Solar Cells with 21.9% Efficiency. J. Energy Chem. 2022, 66, 152–160. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Q.; Xiao, Y.; Zhang, X.; Sun, J.; Han, C.B.; Gao, H.; Zhang, Y.; Lu, Y.; Yan, H. Mechanism of PbI 2 in Situ Passivated Perovskite Films for Enhancing the Performance of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 44101–44108. [Google Scholar] [CrossRef] [PubMed]
- Domanski, K.; Roose, B.; Matsui, T.; Saliba, M.; Turren-Cruz, S.-H.; Correa-Baena, J.-P.; Carmona, C.R.; Richardson, G.; Foster, J.M.; De Angelis, F.; et al. Migration of Cations Induces Reversible Performance Losses over Day/night Cycling in Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 604–613. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, J.; Ge, Y.; Tian, B.; Zhang, Z.; Sui, M. Decisive Influence of Amorphous PbI2−x on the Photodegradation of Halide Perovskites. J Mater. Chem. A 2021, 9, 15059–15067. [Google Scholar] [CrossRef]
- Liang, J.; Hu, X.; Wang, C.; Liang, C.; Chen, C.; Xiao, M.; Li, J.; Tao, C.; Xing, G.; Yu, R.; et al. Origins and Influences of Metallic Lead in Perovskite Solar Cells. Joule 2022, 6, 816–833. [Google Scholar] [CrossRef]
- Roose, B.; Dey, K.; Chiang, Y.-H.; Friend, R.H.; Stranks, S.D. Critical Assessment of the Use of Excess Lead Iodide in Lead Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 2020, 11, 6505–6512. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; You, J.; Aranda, C.; Kang, Y.S.; Garcia-Belmonte, G.; Zhou, H.; Bisquert, J.; Yang, Y. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. ACS Nano 2016, 10, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Tumen-Ulzii, G.; Qin, C.; Klotz, D.; Leyden, M.R.; Wang, P.; Auffray, M.; Fujihara, T.; Matsushima, T.; Lee, J.; Lee, S.; et al. Detrimental Effect of Unreacted PbI2 on the Long-Term Stability of Perovskite Solar Cells. Adv. Mater. 2020, 32, e1905035. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Inactive (PbI2)2RbCl Stabilizes Perovskite Films for Efficient Solar Cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef]
- Wang, H.; Ouyang, Y.; Zou, W.; Deng, X.; Luo, H.; Liu, X.; Li, H.; Zhou, R.; Peng, X.; Gong, X.; et al. Suppression of PbI2 Decomposition with Lewis Base Semicarbazide Hydrochloride for Photostable and Efficient Perovskite Solar Cells. J. Power Sources 2022, 552, 232213. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Wang, C.; Ren, H.; Luo, Y.-X.; Shen, K.-C.; Li, Y.; Song, F.; Gao, X.; Tang, J.-X. High-Light-Tolerance PbI2 Boosting the Stability and Efficiency of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 24692–24701. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ouyang, Y.; Zou, W.; Liu, X.; Li, H.; Zhou, R.; Peng, X.; Gong, X. Enhanced Activation Energy Released by Coordination of Bifunctional Lewis Base d-Tryptophan for Highly Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 58458–58466. [Google Scholar] [CrossRef] [PubMed]
- Ustinova, M.I.; Mikheeva, M.M.; Shilov, G.V.; Dremova, N.N.; Frolova, L.; Stevenson, K.J.; Aldoshin, S.M.; Troshin, P.A. Partial Substitution of Pb2+ in CsPbI3 as an Efficient Strategy to Design Fairly Stable All-Inorganic Perovskite Formulations. ACS Appl. Mater. Interfaces 2021, 13, 5184–5194. [Google Scholar] [CrossRef] [PubMed]
- Ustinova, M.I.; Lobanov, M.V.; Shilov, G.V.; Dremova, N.N.; Akbulatov, A.F.; Gutsev, L.G.; Zhidkov, I.S.; Kurmaev, E.Z.; Prudnov, F.A.; Ivanov, A.V.; et al. Substitutional Chemistry of MAPbI3: Gaining Control over Material Photostability and Photovoltaic Performance via Pb2+ Replacement. Adv. Funct. Mater. 2024, 35, 2407571. [Google Scholar] [CrossRef]
- Alexander, G.C.; Krantz, P.W.; Jung, H.J.; Davis, S.K.; Xu, Y.; Dravid, V.P.; Chandrasekhar, V.; Kanatzidis, M.G. Controllable Nonclassical Conductance Switching in Nanoscale Phase-Separated (PbI2)1−x(BiI3)x Layered Crystals. Adv. Mater. 2021, 33, 2103098. [Google Scholar] [CrossRef]
- Gloskovskii, A.V.; Panasyuk, M.R.; Yaritskaya, L.I.; Gloskovskaya, N.K. Impurity Bands in the CdI2-PbI2 Crystal System. Phys. Solid State 2003, 45, 414–418. [Google Scholar] [CrossRef]
- Kecsenovity, E.; Kochuveedu, S.T.; Chou, J.-P.; Lukács, D.; Gali, Á.; Janáky, C. Solar Photoelectroreduction of Nitrate Ions on PbI2 /CuI Nanocomposite Electrodes. Solar RRL 2021, 5, 418. [Google Scholar] [CrossRef]
- Akbulatov, A.F.; Ustinova, M.I.; Shilov, G.V.; Dremova, N.N.; Zhidkov, I.S.; Kurmaev, E.Z.; Frolova, L.A.; Shestakov, A.F.; Aldoshin, S.M.; Troshin, P.A. Temperature Dynamics of MAPbI3 and PbI2 Photolysis: Revealing the Interplay between Light and Heat, Two Enemies of Perovskite Photovoltaics. J. Phys. Chem. Lett. 2021, 12, 4362–4367. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; et al. A Eu3+-Eu2+ Ion Redox Shuttle Imparts Operational Durability to Pb-I Perovskite Solar Cells. Science 2019, 363, 265–270. [Google Scholar] [CrossRef]
- Ustinova, M.I.; Frolova, L.A.; Rasmetyeva, A.V.; Emelianov, N.A.; Sarychev, M.N.; Shilov, G.V.; Kushch, P.P.; Dremova, N.N.; Kichigina, G.A.; Kukharenko, A.I.; et al. A Europium Shuttle for Launching Perovskites to Space: Using Eu 2+ /Eu 3+ Redox Chemistry to Boost Photostability and Radiation Hardness of Complex Lead Halides. J. Mater. Chem. A 2024, 12, 13219–13230. [Google Scholar] [CrossRef]
- Korobeynikov, N.A.; Usoltsev, A.N.; Abramov, P.A.; Sokolov, M.N.; Adonin, S.A. One-Dimensional Iodoantimonate(III) and Iodobismuthate(III) Supramolecular Hybrids with Diiodine: Structural Features, Stability and Optical Properties. Molecules 2022, 27, 8487. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ustinova, M.I.; Shilov, G.V.; Troshin, P.A.; Aldoshin, S.M.; Frolova, L.A. Getting to the Heart of the Matter: Control over the Photolysis of PbI2 Through Partial Lead Substitution. Inorganics 2025, 13, 13. https://doi.org/10.3390/inorganics13010013
Ustinova MI, Shilov GV, Troshin PA, Aldoshin SM, Frolova LA. Getting to the Heart of the Matter: Control over the Photolysis of PbI2 Through Partial Lead Substitution. Inorganics. 2025; 13(1):13. https://doi.org/10.3390/inorganics13010013
Chicago/Turabian StyleUstinova, Marina I., Gennadii V. Shilov, Pavel A. Troshin, Sergey M. Aldoshin, and Lyubov A. Frolova. 2025. "Getting to the Heart of the Matter: Control over the Photolysis of PbI2 Through Partial Lead Substitution" Inorganics 13, no. 1: 13. https://doi.org/10.3390/inorganics13010013
APA StyleUstinova, M. I., Shilov, G. V., Troshin, P. A., Aldoshin, S. M., & Frolova, L. A. (2025). Getting to the Heart of the Matter: Control over the Photolysis of PbI2 Through Partial Lead Substitution. Inorganics, 13(1), 13. https://doi.org/10.3390/inorganics13010013