Silver(I) and Copper(I) Complexes of Dicarboxylic Acid Derivatives: Synthesis, Characterization and Thermal Studies
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of Silver Carboxylates 1–6
3.3. Synthesis of Bis(Triphenylphosphine) Silver(I) Complexes 1a–6a
3.4. Synthesis of Bis(Triphenylphosphine) Copper(I) Complexes 7a–8a
3.5. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.M.J.; Lin, I.J.B. Facile synthesis of silver(I)–carbene complexes. Useful carbene transfer agents. Organometallics 1998, 17, 972–975. [Google Scholar] [CrossRef]
- Dörner, M.; Rautiainen, J.M.; Rust, J.; Lehmann, C.W.; Mohr, F. Acylchalcogenourea complexes of silver(I). Eur. J. Inorg. Chem. 2017, 2017, 789–797. [Google Scholar] [CrossRef]
- Pilz, S.K.; Mohr, F. On the reactivity of thiourea derivatives with silver(I) oxide. Eur. J. Inorg. Chem. 2020, 2020, 2285–2294. [Google Scholar] [CrossRef]
- Piani, R.; Beele, B.B.; Rust, J.; Lehmann, C.W.; Mohr, F. Coinage metal complexes containing perfluorinated carboxylates. Chemistry 2023, 5, 813–833. [Google Scholar] [CrossRef]
- Morzyk-Ociepa, B.; Michalska, D. FT-Raman and infrared spectra of silver(I) complexes with glutarimidate and 3,3-dimethylglutarimidate anions. Spectrochim. Acta Part A 1999, 55, 2671–2676. [Google Scholar] [CrossRef]
- Handley, G.J.; Nelson, E.R.; Sommers, T.C. Compounds derived from b-substituted glutaric acids: Glutarimides, glutaramic acids, 1,5-pentane diols. Aust. J. Chem. 1960, 13, 127–144. [Google Scholar] [CrossRef]
- Perron, J.; Beauchamp, A.L. Interactions de l’ion Ag+ avec la glutarmidie. Can. J. Chem. 1984, 62, 1287–1291. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Edwards, D.A.; Harker, R.M.; Mahon, M.F.; Molloy, K.C. Aerosol-assisted chemical vapour deposition (AACVD) of silver films from triorganophosphine adducts of silver carboxylates, including the structure of [Ag(O2CC3F7)(PPh3)2]. Inorg. Chim. Acta 2002, 328, 134–146. [Google Scholar] [CrossRef]
- Olson, L.P.; Whitcomb, D.R.; Rajeswaran, M.; Blanton, T.N.; Stwertka, B.J. The simple yet elusive crystal structure of silver acetate and the role of the Ag–Ag bond in the formation of silver nanoparticles during the thermally induced reduction of silver carboxylates. Chem. Mater. 2006, 18, 1667–1674. [Google Scholar] [CrossRef]
- Edwards, D.A.; Mahon, M.F.; Molloy, K.C.; Ogrodnik, V. Aerosol-assisted chemical vapour deposition of silver thin films from adducts of functionalised silver carboxylates. J. Mater. Chem. 2003, 13, 563–570. [Google Scholar] [CrossRef]
- Tolochko, B.P.; Chernov, S.V.; Nikitenko, S.G.; Whitcomb, D.R. EXAFS determination of the structure of silver stearate, [Ag(O2C(CH2)16CH3]2, and the effect of temperature on the silver coordination sphere. Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 405, 428–434. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. Argentophilic interactions. Angew. Chem. Int. Ed. 2015, 54, 746–784. [Google Scholar] [CrossRef]
- Han, J.; Shen, Y.; Li, C.; Li, Y.; Pan, Y. Synthesis and characterization of triphenylphosphine stabilized silver α,β-unsaturated carboxylate: Crystal structure of [Ag(O2CCH=C(CH3)2)(PPh3)2]. Inorg. Chim. Acta 2005, 358, 4417–4422. [Google Scholar] [CrossRef]
- Richards, V.N.; Rath, N.P.; Buhro, W.E. Pathway from a molecular precursor to silver Nanoparticles: The prominent role of aggregative growth. Chem. Mater. 2010, 22, 3556–3567. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955–964. [Google Scholar] [CrossRef]
- Whitcomb, D.R.; Rogers, R.D. The molecular structure of [bis-triphenylphosphine-silver(I) stearate], [((C6H5)3P)2Ag(O2C(CH2)16CH3)], solubilization of long alkyl chain silver carboxylates. J. Chem. Crystallogr. 1996, 26, 99–105. [Google Scholar] [CrossRef]
- Grabowsky, S.; White, A.H.; Healy, P.C.; Lapere, K.M.; Ng, S.W.; Skelton, B.W.; Wild, D.A.; Bowmaker, G.A.; Hanna, J.V. Solid-state NMR, X-ray diffraction, and theoretical studies of neutral mononuclear molecular bis(triphenylphosphine)silver(I) mono-carboxylate and -nitrate systems. Aust. J. Chem. 2020, 73, 556–569. [Google Scholar] [CrossRef]
- Adner, D.; Möckel, S.; Korb, M.; Buschbeck, R.; Rüffer, T.; Schulze, S.; Mertens, L.; Hietschold, M.; Mehring, M.; Lang, H. Copper(II) and triphenylphosphine copper(I) ethylene glycol carboxylates: Synthesis, characterisation and copper nanoparticle generation. Dalton Trans. 2013, 42, 15599–15609. [Google Scholar] [CrossRef]
- Adner, D.; Korb, M.; Schulze, S.; Hietschold, M.; Lang, H. A straightforward approach to oxide-free copper nanoparticles by thermal decomposition of a copper(I) precursor. Chem. Commun. 2013, 49, 6855–6857. [Google Scholar] [CrossRef]
- Jurado-Vázquez, T.; Rosaldo, E.; Arévalo, A.; García, J.J. Levulinic acid hydrogenation with homogeneous Cu(I) catalyst. ChemCatChem 2022, 14, e202200628. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Holtcamp, M.W.; Longridge, E.M.; Klausmeyer, K.K.; Reibenspies, J.H. Structural characterization of bidentate carboxylate derivatives of copper(I) bistriphenylphosphine. Inorg. Chim. Acta 1994, 227, 223–232. [Google Scholar] [CrossRef]
- Yang, W.; List-Kratochvil, E.J.W.; Wang, C. Metal particle-free inks for printed flexible electronics. J. Mater. Chem. C 2019, 7, 15098–15117. [Google Scholar] [CrossRef]
- Cummins, G.; Desmulliez, M.P.Y. Inkjet printing of conductive materials: A review. Curcuit World 2012, 38, 193–213. [Google Scholar] [CrossRef]
- Jahn, S.F.; Blaudeck, T.; Baumann, R.R.; Jakob, A.; Ecorchard, P.; Rüffer, T.; Lang, H.; Schmidt, P. Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem. Mater. 2010, 22, 3067–3071. [Google Scholar] [CrossRef]
- Jahn, S.F.; Jakob, A.; Blaudeck, T.; Schmidt, P.; Lang, H.; Baumann, R.R. Inkjet printing of conductive patterns with an aqueous solution of [AgO2C(CH2OCH2)3H] without any additional stabilizing ligands. This Solid Films 2010, 518, 3218–3222. [Google Scholar] [CrossRef]
- Kintzel, S.; Eckhardt, K.; Getzschmann, J.; Bon, V.; Grothe, J.; Kaskel, S. Synthesis and structure of the silver complexes [Ag2(C4H6O4N)NO3] H2O and Ag6(C6H6O6N)2 for the formulation of silver inks in nanoimprint lithography. Eur. J. Inorg. Chem. 2020, 2020, 3167–3173. [Google Scholar] [CrossRef]
- CrysAlisPro, version 42_32.73a; Rigaku Oxford Diffraction Ltd.: Oxford, UK, 2023.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
τ4 | Bond Lengths (Å) | Bond Angles (°) | ||||
---|---|---|---|---|---|---|
Ag-P | Ag-O(1) | Ag-O(2) | P(1)-Ag-P(2) | O(1)-Ag-O(2) | ||
1a | 0.78 | 2.4070(5) 2.4594(5) | 2.3688(14) | 2.5031(15) | 126.852(18) | 53.98(5) |
2a | 0.80 | 2.4237(5) 2.4370(5) | 2.3800(14) | 2.4968(14) | 125.669(17) | 53.42(11) |
5a | 0.78 | 2.4081(5) | 2.3505(13) | 2.529(5) * | 126.186(17) | 53.94(5) |
2.4456(5) | 2.630(6) | |||||
6a | 0.80 | 2.4232(5) | 2.3913(14) | 2.4544(15) | 124.805(18) | 54.17(5) |
2.4333(5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hankel née Reinhold, K.; Burzlaff, F.; Beele, B.B.; Mohr, F. Silver(I) and Copper(I) Complexes of Dicarboxylic Acid Derivatives: Synthesis, Characterization and Thermal Studies. Inorganics 2024, 12, 140. https://doi.org/10.3390/inorganics12050140
Hankel née Reinhold K, Burzlaff F, Beele BB, Mohr F. Silver(I) and Copper(I) Complexes of Dicarboxylic Acid Derivatives: Synthesis, Characterization and Thermal Studies. Inorganics. 2024; 12(5):140. https://doi.org/10.3390/inorganics12050140
Chicago/Turabian StyleHankel née Reinhold, Katharina, Fabian Burzlaff, Björn B. Beele, and Fabian Mohr. 2024. "Silver(I) and Copper(I) Complexes of Dicarboxylic Acid Derivatives: Synthesis, Characterization and Thermal Studies" Inorganics 12, no. 5: 140. https://doi.org/10.3390/inorganics12050140
APA StyleHankel née Reinhold, K., Burzlaff, F., Beele, B. B., & Mohr, F. (2024). Silver(I) and Copper(I) Complexes of Dicarboxylic Acid Derivatives: Synthesis, Characterization and Thermal Studies. Inorganics, 12(5), 140. https://doi.org/10.3390/inorganics12050140