Isocyanide Cycloaddition and Coordination Processes at Trigonal Phosphinidene-Bridged MoRe and MoMn Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reactions of Compounds 1a,b with Isocyanides: Stoichiometric Reactions
2.2. Reactions of Compounds 1a,b with Isocyanides: Reactions in the Presence of Excess CNR
2.2.1. Characterisation of Azaphosphallene Derivatives 4a.1, 6a.1 and 7a.3-5
2.2.2. Characterisation of Compounds 5
2.2.3. Characterisation of the Manganese Derivatives 3b.1 and 8b.1
3. Materials and Methods
3.1. General Procedures and Starting Materials
3.2. Preparation of [MoReCp(μ-PMes*)(CO)5{2κ-CN(p-C6H4OMe)}] (2a.1)
3.3. Preparation of [MoReCp(μ-PMes*)(CO)5(2κ-CNtBu)] (2a.2)
3.4. Preparation of [MoReCp(μ-PMes*)(CO)5{2κ-CN(p-C6H4OMe)}2] (3a.1)
3.5. Preparation of [MoReCp(μ-PMes*)(CO)5(2κ-CNtBu)2] (3a.2)
3.6. Preparation of [MoReCp{μ-η2P,C:κ1P-PMes*CN(p-C6H4OMe)}(CO)6{2κ-CN(p-C6H4OMe)}] (4a.1)
3.7. Preparation of [MoReCp(μ-PMes*)(CO)6{2κ-CN(p-C6H4OMe)}] (5a.1)
3.8. Preparation of [MoReCp(μ-PMes*)(CO)6(2κ-CNtBu)] (5a.2)
3.9. Preparation of [MoReCp{μ-η2P,C:κ1P-PMes*CN(p-C6H4OMe)}(CO)5{2κ-CN(p-C6H4OMe)}2] (6a.1)
3.10. Preparation of [MoReCp{μ-η2P,C:κ1P-PMes*CN(o-C6H4Me)}(CO)6{2κ-CN(p-C6H4OMe)}] (7a.3)
3.11. Preparation of [MoReCp(μ-η2P,C:κ1P-PMes*CNiPr)(CO)6{2κ-CN(p-C6H4OMe)}] (7a.4)
3.12. Preparation of [MoReCp{μ-η2P,C:κ1P-PMes*CN(p-C6H4OMe)}(CO)6(2κ-CNtBu)] (7a.5)
3.13. Reaction of 1b with Excess CN(p-C6H4OMe)
3.14. X-ray Structure Determination of Compound 5a.1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Mathey, F.; Duan, Z. Activation of AH bonds (A = B, C, N, O, Si) by using monovalent phosphorus complexes [RP→M]. Dalton Trans. 2016, 45, 1804–1809. [Google Scholar] [CrossRef]
- Aktas, H.; Slootweg, J.C.; Lammertsma, K. Nucleophilic phosphinidene complexes: Access and applicability. Angew. Chem. Int. Ed. 2010, 49, 2102–2113. [Google Scholar] [CrossRef]
- Waterman, R. Metal-phosphido and -phosphinidene complexes in P-E bond-forming reactions. Dalton Trans. 2009, 1, 18–26. [Google Scholar] [CrossRef]
- Mathey, F. Developing the chemistry of monovalent phosphorus. Dalton Trans. 2007, 1861–1868. Available online: https://pubs.rsc.org/en/content/articlelanding/2007/dt/b702063p (accessed on 4 September 2023). [CrossRef]
- Dillon, K.B.; Mathey, F.; Nixon, J.F. Phosphorus: The Carbon-Copy; Wiley: Chichester, UK, 1998. [Google Scholar]
- García, M.E.; García-Vivó, D.; Ramos, A.; Ruiz, M.A. Phosphinidene-bridged binuclear complexes. Coord. Chem. Rev. 2017, 330, 1–36. [Google Scholar] [CrossRef]
- Navarro, M.; Moreno, J.J.; Pérez-Jiménez, M.; Campos, J. Small molecule activation with bimetallic systems: A landscape of cooperative reactivity. Chem. Commun. 2022, 58, 11220–11235. [Google Scholar] [CrossRef]
- Sinhababu, S.; Lakliang, Y.; Mankad, N.P. Recent advances in cooperative activation of CO2 and N2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Trans. 2022, 51, 6129–6147. [Google Scholar] [CrossRef] [PubMed]
- Knorr, M.; Jourdain, I. Activation of alkynes by diphosphine- and μ-phosphido spanned heterobimetallic complexes. Coord. Chem. Rev. 2017, 350, 217–247. [Google Scholar] [CrossRef]
- Mankad, N.P. Selectivity effects in bimetallic catalysis. Chem. Eur. J. 2016, 22, 5822–5829. [Google Scholar] [CrossRef]
- Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28–126. [Google Scholar] [CrossRef]
- Eisenhart, R.J.; Clouston, L.J.; Lu, C.C. Configuring Bonds between First-Row Transition Metals. Acc. Chem. Res. 2015, 48, 2885–2894. [Google Scholar] [CrossRef]
- Alvarez, M.A.; García, M.E.; García-Vivó, D.; Ruiz, M.A.; Vega, P. Efficient Synthesis and Multisite Reactivity of a Phosphinidene-Bridged Mo−Re Complex. A Platform Combining Nucleophilic and Electrophilic Features. Inorg. Chem. 2020, 59, 9481–9485. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.A.; Burgos, M.; García, M.E.; García-Vivó, D.; Ruiz, M.A.; Vega, P. One-Step Synthesis and P−H Bond Cleavage Reactions of the Phosphanyl Complex syn-[MoCp{PH-(2,4,6-C6H2tBu3)}(CO)2] to Give Heterometallic Phosphinidene-Bridged Derivatives. Dalton Trans. 2019, 48, 14585–14589. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.A.; García, M.E.; García-Vivó, D.; Ruiz, M.A.; Vega, P. Heterometallic Phosphinidene-Bridged Complexes Derived from the Phosphanyl Complexes syn-[MCp(PHR*)(CO)2] (M = Mo, W; R* = 2,4,6-C6H2tBu3). J. Organomet. Chem. 2022, 977, 122460. [Google Scholar] [CrossRef]
- Alvarez, M.A.; García, M.E.; García-Vivó, D.; Ruiz, M.A.; Vega, P. Cycloaddition and C-S Bond Cleavage Processes in Reactions of Heterometallic Phosphinidene-Bridged MoRe and MoMn Complexes with Alkynes and Phenyl Isothiocyanate. Organometallics 2023, in press. [CrossRef]
- Alvarez, M.A.; Cuervo, P.M.; García, M.E.; Ruiz, M.A.; Vega, P. P–C, P–N, and M–N Bond Formation Processes in Reactions of Heterometallic Phosphinidene-Bridged MoMn and MoRe Complexes with Diazoalkanes and Organic Azides to Build Three- to Five-Membered Phosphametallacycles. Inorg. Chem. 2022, 61, 18486–18495. [Google Scholar] [CrossRef]
- Seidl, M.; Schiffer, M.; Bodensteiner, M.; Timoshkin, A.Y.; Scheer, M. Reactivity of Bridged Pentelidene Complexes with Isonitriles: A New Way to Pentel-Containing Heterocycles. Chem. Eur. J. 2013, 19, 13783–13791. [Google Scholar] [CrossRef]
- Lv, Y.; Kefalidis, C.E.; Zhou, J.; Maron, L.; Leng, X.; Chen, Y. Versatile Reactivity of a Four-Coordinate Scandium Phosphinidene Complexes: Reduction, Addition, and CO Activation Reactions. J. Am. Chem. Soc. 2013, 135, 14784–14796. [Google Scholar] [CrossRef] [PubMed]
- Braterman, P.S. Metal Carbonyl Spectra; Academic Press: London, UK, 1975. [Google Scholar]
- Davies, M.S.; Aroney, M.J.; Buys, I.E.; Hambley, T.W.; Calvert, J.L. X-ray Crystallographic Study of the Complexes Cr(PCl3)(CO)5, W(PCl3)(CO)5, Cr(PBr3)(CO)5, W(PBr3)(CO)5 and Mo(PMe3)(CO)5: Insight into π-Acceptance by Phosphorus. Inorg. Chem. 1995, 34, 330–336. [Google Scholar] [CrossRef]
- Aktas, H.; Mulder, J.; de Kanter, F.J.J.; Slootweg, J.C.; Schakel, M.; Ehlers, A.W.; Lutz, M.; Spek, A.L.; Lammertsma, K. Iridium Phosphinidene Complexes: A Comparison with Iridium Imido Complexes in Their Reaction with Isocyanides. J. Am. Chem. Soc. 2009, 131, 13531–13537. [Google Scholar] [CrossRef] [PubMed]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echevarría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, 21, 2832–2838. [Google Scholar] [CrossRef]
- David, M.-A.; Alexander, J.B.; Glueck, D.S.; Yap, G.P.A.; Liable-Sands, L.M.; Rheingold, A.L. Phosphaazaallene Dimerization and Phosphaallene Isomerization: Catalysis by Zerovalent Palladium and Platinum Complexes. Organometallics 1997, 16, 378–383. [Google Scholar] [CrossRef]
- Hevia, E.; Pérez, J.; Riera, V.; Miguel, D. New Octahedral Rhenium(I) Tricarbonyl Amido Complexes. Organometallics 2002, 21, 1966–1974. [Google Scholar] [CrossRef]
- Carty, A.J.; McLaughlin, S.A.; Nucciarone, D. Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J.G., Quin, L.D., Eds.; VCH: Deerfield Beach, FL, USA, 1987; Chapter 16. [Google Scholar]
- Treichel, P.M.; Dirreen, G.E.; Mueh, H.J. Manganese(I) isocyanide complexes. J. Organomet. Chem. 1972, 44, 339–352. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C. Purification of Laboratory Chemicals, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Crystal Data for C37H41MoNO7PRe (5a.1) (M = 924.82 g/mol): Triclinic, space group P−1 (no. 2), a = 8.9166(2) Å, b = 12.7525(4) Å, c = 17.1297(5) Å, α = 75.851(3)°, β = 82.477(2)°, γ = 87.540(2)°, V = 1872.33(9) Å3, Z = 2, T = 153(4) K, μ(CuKα) = 9.756 mm−1, Dcalc = 1.640 g/cm3, 18192 reflections measured (3.57° ≤ Θ ≤ 69.473°), 6940 unique (Rint = 0.0548) which were used in all calculations. The final R1 was 0.0428 (I > 2σ(I)) and wR2 was 0.1173 (all data).
- CrysAlis Pro; Oxford Diffraction Ltd.: Oxford, UK, 2006.
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 5–8. [Google Scholar] [CrossRef]
Compound | υ(CO)/υ(CN) | δ(P) |
---|---|---|
[MoReCp(μ-PMes*)(CO)6] (1a) 3 | 2077 (m), 1986 (vs), 1951 (s), 1876 (w) | 673.1 |
[MoMnCp(μ-PMes*)(CO)6] (1b) 4 | 2055 (m), 2039(w), 1974 (vs), 1951 (s), 1888 (w), 1862 (w) | 720.9 |
[MoReCp(μ-PMes*)(CO)5{2κ-CN(p-C6H4OMe)}] (2a.1) | 2149 (w, C–N), 2011(vs), 1948 (m), 1934 (m), 1911 (m, sh) | 697.4 |
[MoReCp(μ-PMes*)(CO)5(2κ-CNtBu)] (2a.2) | 2167 (m, C–N), 2012 (vs), 1944 (s), 1930 (m, sh), 1909 (w, sh) | 703.5 |
[MoReCp(μ-PMes*)(CO)5{2κ-CN(p-C6H4OMe)}2] (3a.1) | 2184 (w, C–N), 2157 (w, C–N), 2031 (vs), 1980 (m), 1952 (m), 1889 (m), 1803 (m) | 522.3 |
[MoReCp(μ-PMes*)(CO)5(2κ-CNtBu)2] (3a.2) | 2198 (w, C–N), 2176 (w, C–N), 2028 (vs), 1969 (m), 1943 (m), 1890 (m), 1803 (m) | 535.1 |
[MoMnCp(μ-PMes*)(CO)5{2κ-CN(p-C6H4OMe)}2] (3b.1) | 2170 (w, C–N), 2148 (w, C–N), 2027 (vs), 1981 (m), 1961 (m), 1891 (m), 1805 (m) | 568.5 |
[MoReCp{μ-η2P,C:κ1P-PMes*CN(p-C6H4OMe)}(CO)6{2κ-CN(p-C6H4OMe)}] (4a.1) 5 | 2180 (w, C–N), 2096 (m), 2024 (s, sh), 2012 (vs), 1976 (m), 1924 (m), 1847 (m) | −268.1 |
[MoReCp(μ-PMes*)(CO)6{2κ-CN(p-C6H4OMe)}] (5a.1) | 2183 (w, C–N), 2095 (m), 2020 (s, sh), 2012 (vs), 1977 (m), 1896 (m), 1811 (m) | 481.3 |
[MoReCp(μ-PMes*)(CO)6(2κ-CNtBu)] (5a.2) | 2197 (w, C–N), 2096 (m), 2010 (vs), 1972 (m), 1896 (m), 1811 (m) | 487.0 |
[MoReCp{μ-η2P,C:κ1P-PMes*CN(p-C6H4OMe)}(CO)5{2κ-CN(p-C6H4OMe)}2] (6a.1) | 2181 (w, C–N), 2152 (w, C–N), 2037 (vs), 1989 (m), 1950 (m), 1918 (m), 1840 (m) | −269.1 |
[MoReCp{μ-η2P,C:κ1P-PMes*CN(o-C6H4Me)}(CO)6{2κ-CN(p-C6H4OMe)}] (7a.3) | 2181 (w, C–N), 2097 (m), 2025 (s, sh), 2015 (vs), 1978 (m), 1923 (m), 1847 (m) | −265.4 |
[MoReCp(μ-η2P,C:κ1P-PMes*CNiPr)(CO)6{2κ-CN(p-C6H4OMe)}] (7a.4) | −262.6 | |
[MoReCp{μ-η2P,C:κ1P-PMes*CN(p-C6H4OMe)}(CO)6(2κ-CNtBu)] (7a.5) | 2193 (w, C–N), 2097 (m), 2024 (s, sh), 2011 (vs), 1973 (m), 1923 (m), 1847 (m) | −269.5 |
[MoMnCp(μ-PMes*)(CO)4{2κ-CN(p-C6H4OMe)}3] (8b.1) | 2163 (w, C–N), 2128 (w, sh, C–N), 2109 (vs), 1981 (m), 1937 (m), 1883 (m), 1797 (m) | 617.9 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Mo1···Re1 | 4.3573(5) | Mo1–P1–Re1 | 127.10(5) |
Mo1–P1 | 2.284(1) | P1–Mo1–C1 | 87.3(1) |
Re1–P1 | 2.581(1) | P1–Mo1–C2 | 92.4(2) |
Mo1–C1 | 1.945(5) | C1–Mo1–C2 | 82.4(2) |
Mo1–C2 | 1.957(5) | P1–Re1–C3 | 84.8(2) |
Re1–C3 | 2.031(7) | P1–Re1–C4 | 92.3(2) |
Re1–C4 | 2.006(5) | P1–Re1–C5 | 92.5(2) |
Re1–C5 | 2.005(7) | P1–Re1–C6 | 176.2(2) |
Re1–C6 | 1.962(7) | P1–Re1–C7 | 91.4(1) |
Re1–C7 | 2.097(5) | Mo1–P1–C20 | 109.2(2) |
Re1–P1–C20 | 123.6(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, M.A.; García, M.E.; García-Vivó, D.; Ruiz, M.A.; Vega, P. Isocyanide Cycloaddition and Coordination Processes at Trigonal Phosphinidene-Bridged MoRe and MoMn Complexes. Inorganics 2023, 11, 364. https://doi.org/10.3390/inorganics11090364
Alvarez MA, García ME, García-Vivó D, Ruiz MA, Vega P. Isocyanide Cycloaddition and Coordination Processes at Trigonal Phosphinidene-Bridged MoRe and MoMn Complexes. Inorganics. 2023; 11(9):364. https://doi.org/10.3390/inorganics11090364
Chicago/Turabian StyleAlvarez, M. Angeles, M. Esther García, Daniel García-Vivó, Miguel A. Ruiz, and Patricia Vega. 2023. "Isocyanide Cycloaddition and Coordination Processes at Trigonal Phosphinidene-Bridged MoRe and MoMn Complexes" Inorganics 11, no. 9: 364. https://doi.org/10.3390/inorganics11090364
APA StyleAlvarez, M. A., García, M. E., García-Vivó, D., Ruiz, M. A., & Vega, P. (2023). Isocyanide Cycloaddition and Coordination Processes at Trigonal Phosphinidene-Bridged MoRe and MoMn Complexes. Inorganics, 11(9), 364. https://doi.org/10.3390/inorganics11090364