First-Principles Calculations to Investigate Structural, Electronic, Optical and Magnetic Properties of Pyrochlore Oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for Energy Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electronic Properties
2.1.1. Energy Band Structure
2.1.2. Density of States
2.2. Magnetic Properties
2.3. Optical Properties
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, R.; Sleight, A. Synthesis of new high-pressure pyrochlore phases. Inorg. Chem. 1968, 7, 1649–1651. [Google Scholar] [CrossRef]
- Fu-k’ang, F.; Kuznetsov, A.; Keler, É. Zirconates of the rare earth elements and their physicochemical properties. Report 1. Zirconates of lanthanum, neodymium and cerium. Bull. Acad. Sci. USSR Div. Chem. Sci. 1964, 13, 1070–1075. [Google Scholar] [CrossRef]
- Kostov, I. Mineralogy; Oliver and Boyd Ltd.: Edinburgh/London, UK, 1968. [Google Scholar]
- Shamblin, J.; Feygenson, M.; Neuefeind, J.; Tracy, C.L.; Zhang, F.; Finkeldei, S.; Bosbach, D.; Zhou, H.; Ewing, R.C.; Lang, M. Probing disorder in isometric pyrochlore and related complex oxides. Nat. Mater. 2016, 15, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Guo, Y.; Gillen, R.; Robertson, J. Chemical trends of defects at HfO2: GaAs and Al2O3: GaAs/InAs/InP/GaSb interfaces. J. Appl. Phys. 2013, 113, 134103. [Google Scholar] [CrossRef]
- Liu, D.; Lin, L.; Liu, M.; Yan, Z.; Dong, S.; Liu, J.-M. Multiferroicity in spin ice Ho2Ti2O7: An investigation on single crystals. J. Appl. Phys. 2013, 113, 17D901. [Google Scholar] [CrossRef]
- Yan, H.; Ning, H.; Kan, Y.; Wang, P.; Reece, M.J. Piezoelectric ceramics with super-high curie points. J. Am. Ceram. Soc. 2009, 92, 2270–2275. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.-G.; Adroja, D.; Khomskii, D.; Streltsov, S.; McEwen, K.; Sakai, H.; Yoshimura, K.; Anisimov, V.; Mori, D. Spin gap in Tl2Ru2O7 and the possible formation of Haldane chains in three-dimensional crystals. Nat. Mater. 2006, 5, 471–476. [Google Scholar] [CrossRef]
- Trojan-Piegza, J.; Zych, E.; Kosińska, M. Fabrication and spectroscopic properties of nanocrystalline La2Hf2O7: Pr. Radiat. Meas. 2010, 45, 432–434. [Google Scholar] [CrossRef]
- Zhang, A.; Lü, M.; Yang, Z.; Zhou, G.; Zhou, Y. Systematic research on RE2Zr2O7 (RE = La, Nd, Eu and Y) nanocrystals: Preparation, structure and photoluminescence characterization. Solid State Sci. 2008, 10, 74–81. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, J.; Fuentes, A.F.; Zhang, F.; Lang, M.; Lu, F.; Ewing, R.C. Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7. Appl. Phys. Lett. 2009, 94, 243110. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nishi, H.; Suzuki, H.; Maeda, K. Solid-state NOx sensor combined with NASICON and Pb–Ru-based pyrochlore-type oxide electrode. Sens. Actuators B Chem. 2000, 65, 141–143. [Google Scholar] [CrossRef]
- Li, Y.J.; Tsai, P.P. Lacunar pyrochlore-type tungsten oxides as humidity-sensing materials. Solid State Ion. 1996, 86, 1001–1004. [Google Scholar] [CrossRef]
- Yang, J.; Han, Y.; Shahid, M.; Pan, W.; Zhao, M.; Wu, W.; Wan, C. A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7. Scr. Mater. 2018, 149, 49–52. [Google Scholar] [CrossRef]
- Rekhila, G.; Brahimi, R.; Bessekhouad, Y.; Trari, M. Physical and photoelectrochemical characterizations of the pyrochlore La1.9Ba0.1Sn2O7: Application to chromate reduction under solar light. J. Photochem. Photobiol. A Chem. 2017, 332, 345–350. [Google Scholar] [CrossRef]
- Uno, W.; Fujii, K.; Niwa, E.; Torii, S.; Miao, P.; Kamiyama, T.; Yashima, M. Experimental visualization of oxide-ion diffusion paths in pyrochlore-type Yb2Ti2O7. J. Ceram. Soc. Jpn. 2018, 126, 341–345. [Google Scholar] [CrossRef]
- Chakoumakos, B.C. Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 1984, 53, 120–129. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. Prog. Solid State Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- Zhang, B.; Dewasurendra, S.; Zhang, F. Blue and red up-conversion light emission in TM-doped A2B2O7 oxides. Mater. Lett. 2016, 170, 53–57. [Google Scholar] [CrossRef]
- Lang, M.; Zhang, F.; Zhang, J.; Wang, J.; Lian, J.; Weber, W.; Schuster, B.; Trautmann, C.; Neumann, E.; Ewing, R. Review of A2B2O7 pyrochlore response to irradiation and pressure. Nucl. Inst. Methods Phys. Res. B Elsevier BV 2010, 268, 2951–2959. [Google Scholar] [CrossRef]
- Zhang, F.; Lang, M.; Ewing, R. Atomic disorder in Gd2Zr2O7 pyrochlore. Appl. Phys. Lett. 2015, 106, 191902. [Google Scholar] [CrossRef]
- Kramer, S.; Tuller, H. A novel titanate-based oxygen ion conductor: Gd2Zr2O7. Solid State Ion. 1995, 82, 15–23. [Google Scholar] [CrossRef]
- Aguilar, T.; Navas, J.; De los Santos, D.M.; Sánchez-Coronilla, A.; Fernández-Lorenzo, C.; Alcántara, R.; Gallardo, J.J.; Blanco, G.; Martín-Calleja, J. TiO2 and pyrochlore Tm2Ti2O7 based semiconductor as a photoelectrode for dye-sensitized solar cells. J. Phys. D Appl. Phys. 2015, 48, 145102. [Google Scholar] [CrossRef]
- Ullah, N.; Ali, Z.; Khan, I.; Rehman, G.; Ahmad, I. Structural, Mechanical and Optoelectronic Properties of Y2M2O7 (M = Ti, V and Nb) Pyrochlores: A First Principles Study. J. Electron. Mater. 2017, 46, 4640–4648. [Google Scholar] [CrossRef]
- Li, X.; Cai, Y.; Cui, Q.; Lin, C.; Dun, Z.; Matsubayashi, K.; Uwatoko, Y.; Sato, Y.; Kawae, T.; Lv, S. Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets Gd2Ge2O7 and Gd2Pt2O7 synthesized under high pressure. Phys. Rev. B 2016, 94, 214429. [Google Scholar] [CrossRef]
- Hallas, A.; Sharma, A.; Cai, Y.; Munsie, T.; Wilson, M.; Tachibana, M.; Wiebe, C.; Luke, G. Relief of frustration in the Heisenberg pyrochlore antiferromagnet Gd2Pt2O7. Phys. Rev. B 2016, 94, 134417. [Google Scholar] [CrossRef]
- Jacob, K.T.; Lwin, K.T.; Waseda, Y. System La-Pd-O: Phase diagram and thermodynamic properties of ternary oxides. Solid State Sci. 2002, 4, 205–215. [Google Scholar] [CrossRef]
- Duran, R.R.; Falsetti, P.E.; Muhr, L.; Privat, R.; Barth, D. Phase equilibrium study of the ternary system CO2 + H2O + ethanol at elevated pressure: Thermodynamic model selection. Application to supercritical extraction of polar compounds. J. Supercrit. Fluids 2018, 138, 17–28. [Google Scholar] [CrossRef]
- Child, M.; Koskinen, O.; Linnanen, L.; Breyer, C. Sustainability guardrails for energy scenarios of the global energy transition. Renew. Sustain. Energy Rev. 2018, 91, 321–334. [Google Scholar] [CrossRef]
- Shibasaki, S.; Terasaki, I. Thermoelectric Properties of Layered Pd Oxide R2PdO4 (R = La, Nd, Sm, and Gd). J. Phys. Soc. Jpn. 2006, 75, 024705. [Google Scholar] [CrossRef]
- Attfield, J.P.; Férey, G. Structural correlations within the lanthanum palladium oxide family. J. Solid State Chem. 1989, 80, 286–298. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Huang, Y.; Tong, Y. Lanthanide-Based Dual Modulation in Hematite Nanospindles for Enhancing the Photocatalytic Performance. ACS Appl. Nano Mater. 2022, 5, 8557–8565. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Lu, X.; Yang, J.; Tong, Y. Enhanced BiVO4 photoanode photoelectrochemical performance via borate treatment and a NiFeOx cocatalyst. ACS Sustain. Chem. Eng. 2021, 9, 8306–8314. [Google Scholar] [CrossRef]
- Azam, S.; Abbas, Z.; Gul, B.; Khan, M.S.; Irfan, M.; Sohail, M.; Khan, S.A.; Naseer, F.; Irfan, A.; Khan, G. First-principles calculations of optoelectronic properties of CaO: Eu+2 (SrO: Eu+2) for energy applications. Int. J. Mod. Phys. B 2018, 32, 1850333. [Google Scholar] [CrossRef]
- Abbas, Z.; Fatima, K.; Muhammad, S.; Siddeeg, S.M.; Ali, A.; Hussain, S.; Jung, J. Investigating the effect of alkali metals on the structural & optoelectronic properties of hexafluorozirconate red phosphors A2ZrF6 (A = Cs, K, Na) using first-principles calculations: A prospect for warm-white LEDs (w-LEDs) applications. J. Solid State Chem. 2023, 317, 123689. [Google Scholar]
- Abbas, Z.; Fatima, K.; Gorczyca, I.; Jaffery, S.H.A.; Ali, A.; Irfan, M.; Raza, H.H.; Algarni, H.; Muhammad, S.; Teisseyre, H. First-principles calculations to investigate electronic, optical, and thermoelectric properties of Na2GeX3 (X = S, Se, Te) for energy applications. Mater. Sci. Semicond. Process. 2023, 154, 107206. [Google Scholar] [CrossRef]
- Fatima, K.; Abbas, Z.; Naz, A.; Alshahrani, T.; Chaib, Y.; Jaffery, S.H.A.; Muhammad, S.; Hussain, S.; Jung, J.; Algarni, H. Shedding light on the structural, optoelectronic, and thermoelectric properties of pyrochlore oxides (La2Q2O7 (Q = Ge, Sn)) for energy applications: A first-principles investigation. J. Solid State Chem. 2022, 313, 123305. [Google Scholar] [CrossRef]
- Abbas, Z.; Hussain, S.; Muhammad, S.; Siddeeg, S.M.; Jung, J. A First-Principles Investigation on the Structural, Optoelectronic, and Thermoelectric Properties of Pyrochlore Oxides (La2Tm2O7 (Tm = Hf, Zr)) for Energy Applications. Int. J. Mol. Sci. 2022, 23, 15266. [Google Scholar] [CrossRef]
- Abbas, Z.; Fatima, K.; Jaffery, S.H.A.; Ali, A.; Raza, H.H.; Muhammad, S.; Algarni, H.; Hussain, S.; Jung, J. Ab-initio study of Nb-based complex materials: A new class of materials for optoelectronic applications. J. Comput. Sci. 2022, 63, 101791. [Google Scholar] [CrossRef]
Compound | |||||
---|---|---|---|---|---|
Eu2Hf2O7 | |||||
0.31875 | −0.37218 | −0.00304 | 24.05657 | 24.00011 | |
Eu2Sn2O7 | |||||
0.33198 | −0.38122 | −0.00204 | 24.04723 | 24.00003 | |
Eu2Zr2O7 | |||||
0.32337 | −0.3775 | −0.00344 | 24.05768 | 24.00012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, Z.; Naz, A.; Hussain, S.; Muhammad, S.; Algarni, H.; Ali, A.; Jung, J. First-Principles Calculations to Investigate Structural, Electronic, Optical and Magnetic Properties of Pyrochlore Oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for Energy Applications. Inorganics 2023, 11, 193. https://doi.org/10.3390/inorganics11050193
Abbas Z, Naz A, Hussain S, Muhammad S, Algarni H, Ali A, Jung J. First-Principles Calculations to Investigate Structural, Electronic, Optical and Magnetic Properties of Pyrochlore Oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for Energy Applications. Inorganics. 2023; 11(5):193. https://doi.org/10.3390/inorganics11050193
Chicago/Turabian StyleAbbas, Zeesham, Adeela Naz, Sajjad Hussain, Shabbir Muhammad, H. Algarni, Ahsan Ali, and Jongwan Jung. 2023. "First-Principles Calculations to Investigate Structural, Electronic, Optical and Magnetic Properties of Pyrochlore Oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for Energy Applications" Inorganics 11, no. 5: 193. https://doi.org/10.3390/inorganics11050193
APA StyleAbbas, Z., Naz, A., Hussain, S., Muhammad, S., Algarni, H., Ali, A., & Jung, J. (2023). First-Principles Calculations to Investigate Structural, Electronic, Optical and Magnetic Properties of Pyrochlore Oxides Eu2Tm2O7 (Tm = Hf, Sn, Zr) for Energy Applications. Inorganics, 11(5), 193. https://doi.org/10.3390/inorganics11050193