Collectable Single Pure-Pd Metal Membrane with High Strength and Flexibility Prepared through Electroplating for Hydrogen Purification
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shu, J.; Grandjean, B.P.A.; Van Neste, A.V.; Kaliaguine, S. Catalytic Palladium-Based Membrane Reactors: A Review. Can. J. Chem. Eng. 1991, 69, 1036–1060. [Google Scholar] [CrossRef]
- Basile, A.; Gallucci, F.; Tosti, S. Synthesis, Characterization, and Applications of Palladium Membranes. Membr. Sci. Technol. 2008, 13, 255–323. [Google Scholar] [CrossRef]
- Paglieri, S.N.; Way, J.D. Innovations in Palladium Membrane Research. Sep. Purif. Methods 2002, 31, 1–169. [Google Scholar] [CrossRef]
- Yun, S.; Ted Oyama, S.T. Correlations in Palladium Membranes for Hydrogen Separation: A Review. J. Membr. Sci. 2011, 375, 28–45. [Google Scholar] [CrossRef]
- Conde, J.J.; Maroño, M.; Sánchez-Hervás, J.M. Pd-Based Membranes for Hydrogen Separation: Review of Alloying Elements and Their Influence on Membrane Properties. Sep. Purif. Rev. 2017, 46, 152–177. [Google Scholar] [CrossRef]
- Zhang, Y.; Komaki, M.; Nishimura, C. Morphological Study of Supported Thin Pd and Pd–25Ag Membranes upon Hydrogen Permeation. J. Membr. Sci. 2005, 246, 173–180. [Google Scholar] [CrossRef]
- Kikuchi, E. Membrane Reactor Application to Hydrogen Production. Catal. Today 2000, 56, 97–101. [Google Scholar] [CrossRef]
- Sonwane, C.G.; Wilcox, J.; Ma, Y.H. Solubility of Hydrogen in PdAg and PdAu Binary Alloys Using Density Functional Theory. J. Phys. Chem. B 2006, 110, 24549–24558. [Google Scholar] [CrossRef]
- Shi, L.; Goldbach, A.; Zeng, G.; Xu, H. Preparation and Performance of Thin-Layered PdAu/Ceramic Composite Membranes. Int. J. Hydrogen Energy 2010, 35, 4201–4208. [Google Scholar] [CrossRef]
- Zeng, G.; Goldbach, A.; Shi, L.; Xu, H. On Alloying and Low-Temperature Stability of Thin, Supported PdAg Membranes. Int. J. Hydrogen Energy 2012, 37, 6012–6019. [Google Scholar] [CrossRef]
- Millet, P.; Ngameni, R.; Decaux, C.; Grigoriev, S.A. Hydrogen Sorption by Pd77Ag23 Metallic Membranes. Role of Hydrogen Content, Temperature and Sample Microstructure. Int. J. Hydrogen Energy 2011, 36, 4262–4269. [Google Scholar] [CrossRef]
- Montesinos, H.; Julián, I.; Herguido, J.; Menéndez, M. Effect of the Presence of Light Hydrocarbon Mixtures on Hydrogen Permeance through Pd–Ag Alloyed Membranes. Int. J. Hydrogen Energy 2015, 40, 3462–3471. [Google Scholar] [CrossRef]
- Kamakoti, P.; Morreale, B.D.; Ciocco, M.V.; Howard, B.H.; Killmeyer, R.P.; Cugini, A.V.; Sholl, D.S. Prediction of Hydrogen Flux through Sulfur-Tolerant Binary Alloy Membranes. Science 2005, 307, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Decaux, C.; Ngameni, R.; Solas, D.; Grigoriev, S.; Millet, P. Time and Frequency Domain Analysis of Hydrogen Permeation across PdCu Metallic Membranes for Hydrogen Purification. Int. J. Hydrogen Energy 2010, 35, 4883–4892. [Google Scholar] [CrossRef]
- Zhang, K.; Way, J.D. Palladium-Copper Membranes for Hydrogen Separation. Sep. Purif. Technol. 2017, 186, 39–44. [Google Scholar] [CrossRef]
- Zhao, C.; Goldbach, A.; Xu, H. Low-Temperature Stability of Body-Centered Cubic PdCu Membranes. J. Membr. Sci. 2017, 542, 60–67. [Google Scholar] [CrossRef]
- Phair, J.W.; Donelson, R. Developments and Design of Novel (Non-palladium-Based) Metal Membranes for Hydrogen Separation. Ind. Eng. Chem. Res. 2006, 45, 5657–5674. [Google Scholar] [CrossRef]
- Dolan, M.D. Non-Pd BCC Alloy Membranes for Industrial Hydrogen Separation. J. Membr. Sci. 2010, 362, 12–28. [Google Scholar] [CrossRef]
- Dolan, M.D.; Song, G.; Liang, D.; Kellam, M.E.; Chandra, D.; Lamb, J.H. Hydrogen Transport through V85Ni10M5 Alloy Membranes. J. Membr. Sci. 2011, 373, 14–19. [Google Scholar] [CrossRef]
- Buxbaum, R.E.; Marker, T.L. Hydrogen Transport through Non-porous Membranes of Palladium-Coated Niobium, Tantalum and Vanadium. J. Membr. Sci. 1993, 85, 29–38. [Google Scholar] [CrossRef]
- Jayaraman, V.; Lin, Y.S. Synthesis and Hydrogen Permeation Properties of Ultrathin Palladium-Silver Alloy Membranes. J. Membr. Sci. 1995, 104, 251–262. [Google Scholar] [CrossRef]
- McCool, B.; Xomeritakis, G.; Lin, Y.S. Composition Control and Hydrogen Permeation Characteristics of Sputter Deposited Palladium-Silver Membranes. J. Membr. Sci. 1999, 161, 67–76. [Google Scholar] [CrossRef]
- Xomeritakis, G.; Lin, Y.S. Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition. J. Membr. Sci. 1996, 120, 261–272. [Google Scholar] [CrossRef]
- Kikuchi, E.; Nemoto, Y.; Kajiwara, M.; Uemiya, S.; Kojima, T. Steam Reforming of Methane in Membrane Reactors: Comparison of Electroless-Plating and CVD Membranes and Catalyst Packing Modes. Catal. Today 2000, 56, 75–81. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Fan, Y.; Xu, N. Palladium-Based Composite Membranes: Principle, Preparation and Characterization. Prog. Chem. 2006, 18, 230–237. [Google Scholar]
- Thoen, P.M.; Roa, F.; Way, J.D. High Flux Palladium–Copper Composite Membranes for Hydrogen Separations. Desalination 2006, 193, 224–229. [Google Scholar] [CrossRef]
- Tosti, S. Supported and Laminated Pd-Based Metallic Membranes. Int. J. Hydrogen Energy 2003, 28, 1445–1454. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Höllein, V.; Daub, K. Membrane Reactors for Hydrogenation and Dehydrogenation Processes Based on Supported Palladium. J. Mol. Catal. A Chem. 2001, 173, 135–184. [Google Scholar] [CrossRef]
- Tong, J.; Shirai, R.; Kashima, Y.; Matsumura, Y. Preparation of a Pinhole-Free Pd–Ag Membrane on a Porous Metal Support for Pure Hydrogen Separation. J. Membr. Sci. 2005, 260, 84–89. [Google Scholar] [CrossRef]
- Bryden, K.J.; Ying, J.Y. Electrodeposition Synthesis and Hydrogen Absorption Properties of Nanostructured Palladium–Iron Alloys. Nanostruct. Mater. 1997, 9, 485–488. [Google Scholar] [CrossRef]
- Gade, S.K.; Thoen, P.M.; Way, J.D. Unsupported Palladium Alloy Foil Membranes Fabricated by Electroless Plating. J. Membr. Sci. 2008, 316, 112–118. [Google Scholar] [CrossRef]
- Endo, N.; Furukawa, Y.; Goshome, K.; Yaegashi, S.; Mashiko, K.-i.; Tetsuhiko, M. Characterization of Mechanical Strength and Hydrogen Permeability of a PdCu Alloy Film Prepared by One-Step Electroplating for Hydrogen Separation and Membrane Reactors. Int. J. Hydrogen Energy 2019, 44, 8290–8297. [Google Scholar] [CrossRef]
- Kato, Y.; Maeda, T.; Endo, N.; Yaegashi, S.; Furukawa, Y.; Dezawa, N. Hydrogen Permeable Membranes and Their Preparation Methods. Japan Patent P6695929, 24 April 2020. (In Japanese). [Google Scholar]
- Knapton, A.G. Palladium Alloys for Hydrogen Diffusion Membranes. Platin. Met. Rev. 1977, 21, 44–50. [Google Scholar]
- Raub, C.J. Electroplating of Palladium for Electrical Contacts. Platin. Met. Rev. 1982, 26, 158–166. [Google Scholar]
- Yasumura, K. Palladium and Palladium Alloy Bath. J. Surf. Finish. Soc. Jpn. 2004, 55, 640–645. [Google Scholar] [CrossRef]
- Snavely, C.A. A Theory for the Mechanism of Chromium Plating; A Theory for the Physical Characteristics of Chromium Plate. J. Electrochem. Soc. 1947, 92, 537. [Google Scholar] [CrossRef]
- Yaegashi, S.; Endo, N.; Kumakawa, M.; Suzuki, S.; Maeda, T. Method and Apparatus for Evaluating Flexibility of Sheet-Type Testing Materials. Japan Patent P6265196, 24 January 2018. [Google Scholar]
- Endo, N.; Yaegashi, S.; Maehata, T.; Kumakawa, M.; Suzuki, S.; Mashiko, K.-i.; Maeda, T. High Thermal Stability and Flexibility of Thin Porous Ni Metal Support Prepared by Electroplating Deposition for Pd Alloy Membranes. Mater. Trans. 2017, 58, 1093–1096. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, C.; Komaki, M.; Amano, M. Hydrogen Permeation Characteristics of Vanadium-Nickel Alloys. Mater. Trans. JIM 1991, 32, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Arblaster, J.W. Crystallographic Properties of Palladium. Platin. Met. Rev. 2012, 56, 181–189. [Google Scholar] [CrossRef]
- Amano, M.; Nishimura, C.; Komaki, M. Effect of High Concentration CO and CO2 on Hydrogen Permeation through the Palladium Membrane. Mater. Trans. JIM 1990, 31, 404–408. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Endo, N.; Kaneko, Y.; Dezawa, N.; Komo, Y.; Higuchi, M. Collectable Single Pure-Pd Metal Membrane with High Strength and Flexibility Prepared through Electroplating for Hydrogen Purification. Inorganics 2023, 11, 111. https://doi.org/10.3390/inorganics11030111
Endo N, Kaneko Y, Dezawa N, Komo Y, Higuchi M. Collectable Single Pure-Pd Metal Membrane with High Strength and Flexibility Prepared through Electroplating for Hydrogen Purification. Inorganics. 2023; 11(3):111. https://doi.org/10.3390/inorganics11030111
Chicago/Turabian StyleEndo, Naruki, Yumi Kaneko, Norikazu Dezawa, Yasuhiro Komo, and Masanobu Higuchi. 2023. "Collectable Single Pure-Pd Metal Membrane with High Strength and Flexibility Prepared through Electroplating for Hydrogen Purification" Inorganics 11, no. 3: 111. https://doi.org/10.3390/inorganics11030111
APA StyleEndo, N., Kaneko, Y., Dezawa, N., Komo, Y., & Higuchi, M. (2023). Collectable Single Pure-Pd Metal Membrane with High Strength and Flexibility Prepared through Electroplating for Hydrogen Purification. Inorganics, 11(3), 111. https://doi.org/10.3390/inorganics11030111