BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis
3.2. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jana, B.; Ghosh, K.; Rudrapal, K.; Gaur, P.; Shihabudeen, P.K.; Roy Chaudhuri, A. Recent Progress in Flexible Multiferroics. Front. Phys. 2022, 9, 810. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Kimura, T.; Kawamoto, S.; Yamada, I.; Azuma, M.; Takano, M.; Tokura, Y. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 2003, 67, 180401. [Google Scholar] [CrossRef]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, G. Magnetoelectric composites. Annu. Rev. Mater. Res. 2010, 40, 153–178. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.-W. Recent Progress in Multiferroic Magnetoelectric Composites: From Bulk to Thin Films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.K.; Kumari, S.; Rack, P.D. Magnetoelectric Composites: Applications, Coupling Mechanisms, and Future Directions. Nanomaterials 2020, 10, 2072. [Google Scholar] [CrossRef]
- Mao, Q.; Wu, J.; Hu, Z.; Xu, Y.; Du, Y.; Hao, Y.; Guan, M.; Wang, C.; Wang, Z.; Zhou, Z.; et al. Magnetoelectric devices based on magnetoelectric bulk composites. J. Mater. Chem. C 2021, 9, 5594–5614. [Google Scholar] [CrossRef]
- Hu, J.-M.; Duan, C.-G.; Nan, C.-W.; Chen, L.-Q. Understanding and designing magnetoelectric heterostructures guided by computation: Progresses, remaining questions, and perspectives. Npj Comput. Mater. 2017, 3, 18. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X. A brief review on perovskite multiferroics. Ferroelectrics 2017, 507, 69–85. [Google Scholar] [CrossRef]
- Dong, S.; Liu, J.-M. Recent Progress of Multiferroic Perovskite Manganites. Mod. Phys. Lett. B 2012, 26, 1230004. [Google Scholar] [CrossRef] [Green Version]
- Saini, J.; Sharma, A.; Sharma, M.; Kuanr, B.K. Yttrium iron garnet (YIG)/barium titanate (BTO) an engineered multiferroic nanocomposite. J. Alloys Compd. 2021, 879, 160422. [Google Scholar] [CrossRef]
- Wang, X.; Chai, Y.; Zhou, L.; Cao, H.; Cruz, C.; Yang, J.; Dai, J.; Yin, Y.; Yuan, Z.; Zhang, S.; et al. Observation of Magnetoelectric Multiferroicity in a Cubic Perovskite System: LaMn3Cr4O12. Phys. Rev. Lett. 2015, 115, 87601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, Y.; Shimano, R.; Kaneko, Y.; Murakawa, H.; Tokura, Y. Magnetoelectric resonance with electromagnons in a perovskite helimagnet. Nat. Phys. 2012, 8, 121–125. [Google Scholar] [CrossRef]
- Kopyl, S.; Surmenev, R.; Surmeneva, M.; Fetisov, Y.; Kholkin, A. Magnetoelectric effect: Principles and applications in biology and medicine—A review. Mater. Today Bio 2021, 12, 100149. [Google Scholar] [CrossRef]
- Cai, T.-Y.; Liu, S.-C.; Ju, S.; Liu, C.-Y.; Guo, G.-Y. Multiferroic Double Perovskites ScFe1−xCrO3 (1/6 ≤ x ≤ 5/6) for Highly Efficient Photovoltaics and Spintronics. Phys. Rev. Appl. 2017, 8, 34034. [Google Scholar] [CrossRef]
- Huang, W.; Harnagea, C.; Benetti, D.; Chaker, M.; Rosei, F.; Nechache, R. Multiferroic Bi2FeCrO6 based p–i–n heterojunction photovoltaic devices. J. Mater. Chem. A 2017, 5, 10355–10364. [Google Scholar] [CrossRef]
- Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 2015, 9, 61–67. [Google Scholar] [CrossRef]
- Vavilapalli, D.S.; Srikanti, K.; Mannam, R.; Tiwari, B.; Mohan Kant, K.; Rao, M.S.R.; Singh, S. Photoactive Brownmillerite Multiferroic KBiFe2O5 and Its Potential Application in Sunlight-Driven Photocatalysis. ACS Omega 2018, 3, 16643–16650. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Zhou, G.; Sun, L.; Zhao, H.; Chen, Y.; Yang, F.; Zhao, Y.; Song, Q. ABO3 multiferroic perovskite materials for memristive memory and neuromorphic computing. Nanoscale Horiz. 2021, 6, 939–970. [Google Scholar] [CrossRef]
- Plyushch, A.; Macutkevič, J.; Sokal, A.; Lapko, K.; Kudlash, A.; Adamchuk, D.; Ksenevich, V.; Bychanok, D.; Selskis, A.; Kuzhir, P.; et al. The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materials. Materials 2021, 14, 133. [Google Scholar] [CrossRef] [PubMed]
- Omelyanchik, A.; Antipova, V.; Gritsenko, C.; Kolesnikova, V.; Murzin, D.; Han, Y.; Turutin, A.V.; Kubasov, I.V.; Kislyuk, A.M.; Ilina, T.S.; et al. Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites. Nanomaterials 2021, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
- Homes, C.C.; Dordevic, S.V.; Strongin, M.; Bonn, D.A.; Liang, R.; Hardy, W.H.; Komiya, S.; Ando, Y.; Yu, G.; Kaneko, N.; et al. A universal scaling relation in high-temperature superconductors. Nature 2004, 430, 539–541. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.; Larrea, A.; Gonçalves, R.; Botelho, G.; Ramana, E.V.; Mendiratta, S.K.; Sebastian, V.; Lanceros-Mendez, S. Novel Anisotropic Magnetoelectric Effect on δ-FeO(OH)/P(VDF-TrFE) Multiferroic Composites. ACS Appl. Mater. Interfaces 2015, 7, 11224–11229. [Google Scholar] [CrossRef]
- Corral-Flores, V.; Bueno-Baqués, D.; Ziolo, R.F. Synthesis and characterization of novel CoFe2O4–BaTiO3 multiferroic core–shell-type nanostructures. Acta Mater. 2010, 58, 764–769. [Google Scholar] [CrossRef]
- Chermahini, M.D.; Shahraki, M.M.; Kazazi, M. Multiferroic properties of novel lead-free KNN-LT/20NZCFO magneto-electric composites. Mater. Lett. 2018, 233, 188–190. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Lin, Y.; Nan, C.-W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2010, 2, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, K.P.; Guedes, J.M.; Rodrigues, H.C. Solutions for maximum coupling in multiferroic magnetoelectric composites by material design. Sci. Rep. 2018, 8, 4866. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Wang, J.; Hu, J.-M.; Wang, J.; Ma, J.; Li, H.-B.; Shen, Y.; Lin, Y.-H.; Chen, L.-Q.; Nan, C.-W. Optimizing direct magnetoelectric coupling in Pb(Zr,Ti)O3/Ni multiferroic film heterostructures. Appl. Phys. Lett. 2015, 106, 72901. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Chatterjee, R. Dielectric and magnetoelectric properties of BaTiO3–Co0.6Zn0.4Fe1.7Mn0.3O4 composite. J. Eur. Ceram. Soc. 2013, 33, 1017–1022. [Google Scholar] [CrossRef]
- Gorige, V.; Kati, R.; Yoon, D.H.; Kumar, P.S.A. Strain mediated magnetoelectric coupling in a NiFe2O4–BaTiO3 multiferroic composite. J. Phys. D Appl. Phys. 2016, 49, 405001. [Google Scholar] [CrossRef]
- Yang, S.-C.; Kumar, A.; Petkov, V.; Priya, S. Room-temperature magnetoelectric coupling in single-phase BaTiO3-BiFeO3 system. J. Appl. Phys. 2013, 113, 144101. [Google Scholar] [CrossRef]
- Patil, D.; Kim, J.-H.; Chai, Y.S.; Nam, J.-H.; Cho, J.-H.; Kim, B.-I.; Kim, K.H. Large Longitudinal Magnetoelectric Coupling in NiFe2O4–BaTiO3 Laminates. Appl. Phys. Express 2011, 4, 73001. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Pérez, J.P.; Bolarín-Miró, A.M.; Cortés-Escobedo, C.A.; Sánchez-De Jesús, F. Magnetodielectric coupling in barium titanate–cobalt ferrite composites obtained via thermally-assisted high-energy ball milling. Ceram. Int. 2022, 48, 9527–9533. [Google Scholar] [CrossRef]
- Dzunuzovic, A.S.; Petrovic, M.M.V.; Stojadinovic, B.S.; Ilic, N.I.; Bobic, J.D.; Foschini, C.R.; Zaghete, M.A.; Stojanovic, B.D. Multiferroic (NiZn) Fe2O4–BaTiO3 composites prepared from nanopowders by auto-combustion method. Ceram. Int. 2015, 41, 13189–13200. [Google Scholar] [CrossRef] [Green Version]
- Etier, M.; Schmitz-Antoniak, C.; Salamon, S.; Trivedi, H.; Gao, Y.; Nazrabi, A.; Landers, J.; Gautam, D.; Winterer, M.; Schmitz, D.; et al. Magnetoelectric coupling on multiferroic cobalt ferrite–barium titanate ceramic composites with different connectivity schemes. Acta Mater. 2015, 90, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.; Hossain, S. Magnetic and Optical Characterization of Cobalt Ferrite–Barium Titanate Core–Shell for Biomedical Applications. IEEE Trans. Magn. 2022, 58, 2501208. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Qu, H.; Srinivasan, G. Multiferroic oxide composites: Synthesis, characterisation and applications. Mater. Sci. Technol. 2014, 30, 1625–1632. [Google Scholar] [CrossRef]
- Ryu, J.; Carazo, A.V.; Uchino, K.; Kim, H.-E. Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceramics 2001, 7, 17–24. [Google Scholar] [CrossRef]
- Hrib, L.M.; Caltun, O.F. Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite–barium titanate composites. J. Alloys Compd. 2011, 509, 6644–6648. [Google Scholar] [CrossRef]
- Grigalaitis, R.; Vijatović Petrović, M.M.; Bobić, J.D.; Dzunuzovic, A.; Sobiestianskas, R.; Brilingas, A.; Stojanović, B.D.; Banys, J. Dielectric and magnetic properties of BaTiO3-NiFe2O4 multiferroic composites. Ceram. Int. 2014, 40, 6165–6170. [Google Scholar] [CrossRef]
- El-Shater, R.E.; Atlam, A.S.; Elnimr, M.K.; Assar, S.T.; Tishkevich, D.I.; Zubar, T.I.; Trukhanov, S.V.; Trukhanov, A.V.; Zhou, D.; Darwish, M.A. AC measurements, impedance spectroscopy analysis, and magnetic properties of Ni0.5Zn0.5Fe2O4/BaTiO3 multiferroic composites. Mater. Sci. Eng. B 2022, 286, 116025. [Google Scholar] [CrossRef]
- De Leo, C.T.; Dannangoda, G.C.; Hobosyan, M.A.; Held, J.T.; Samghabadi, F.S.; Khodadadi, M.; Litvinov, D.; Mkhoyan, K.A.; Martirosyan, K.S. Carbon combustion synthesis of Janus-like particles of magnetoelectric cobalt ferrite and barium titanate. Ceram. Int. 2021, 47, 5415–5422. [Google Scholar] [CrossRef]
- Matutes-Aquino, J.A.; Botello-Zubiate, M.E.; Corral-Flores, V.; Frutos, J.D.E.; Cebollada, F.; Menéndez, E.; Jiménez, F.J.; González, A.M. Synthesis and Characterization of Nickel Ferrite-Barium Titanate Ceramic Composites. Integr. Ferroelectr. 2008, 101, 22–28. [Google Scholar] [CrossRef]
- Safi Samghabadi, F.; Chang, L.; Khodadadi, M.; Martirosyan, K.S.; Litvinov, D. Scalable, cost-efficient synthesis and properties optimization of magnetoelectric cobalt ferrite/barium titanate composites. APL Mater. 2021, 9, 21104. [Google Scholar] [CrossRef]
- Majid, F.; Rauf, J.; Ata, S.; Bibi, I.; Malik, A.; Ibrahim, S.M.; Ali, A.; Iqbal, M. Synthesis and characterization of NiFe2O4 ferrite: Sol–gel and hydrothermal synthesis routes effect on magnetic, structural and dielectric characteristics. Mater. Chem. Phys. 2021, 258, 123888. [Google Scholar] [CrossRef]
- Majid, F.; Rauf, J.; Ata, S.; Bibi, I.; Yameen, M.; Iqbal, M. Hydrothermal Synthesis of Zinc Doped Nickel Ferrites: Evaluation of Structural, Magnetic and Dielectric Properties. Z. Für Phys. Chemie 2019, 233, 1411–1430. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, A.A.; Moreno-Trejo, M.B.; Meléndez-Zaragoza, M.J.; Collins-Martínez, V.; López-Ortiz, A.; Martínez-Guerra, E.; Sánchez-Domínguez, M. Spinel-type ferrite nanoparticles: Synthesis by the oil-in-water microemulsion reaction method and photocatalytic water-splitting evaluation. Int. J. Hydrogen Energy 2019, 44, 12421–12429. [Google Scholar] [CrossRef]
- Atiq, S.; Majeed, M.; Ahmad, A.; Abbas, S.K.; Saleem, M.; Riaz, S.; Naseem, S. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 2017, 43, 2486–2494. [Google Scholar] [CrossRef]
- Thakur, P.; Taneja, S.; Chahar, D.; Ravelo, B.; Thakur, A. Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 2021, 530, 167925. [Google Scholar] [CrossRef]
- Shahane, G.S.; Kumar, A.; Arora, M.; Pant, R.P.; Lal, K. Synthesis and characterization of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 2010, 322, 1015–1019. [Google Scholar] [CrossRef]
- Gajbhiye, N.S.; Prasad, S. Thermal decomposition of hexahydrated nickel iron citrate. Thermochim. Acta 1996, 285, 325–336. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Shen, X.-Q.; Zhou, J.-X.; Jing, M.-X.; Cao, K. Preparation of spinel ferrite NiFe2O4 fibres by organic gel-thermal decomposition process. J. Sol-Gel Sci. Technol. 2007, 42, 95–100. [Google Scholar] [CrossRef]
- Itoh, H.; Takeda, T.; Naka, S. Preparation of nickel and Ni-Zn ferrite films by thermal decomposition of metal acetylacetonates. J. Mater. Sci. 1986, 21, 3677–3680. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, M.; Shin, H.-S.; Ju, B.-K.; Chun, M. Structural and Magnetic Properties of NiZn Ferrite Nanoparticles Synthesized by a Thermal Decomposition Method. Appl. Sci. 2020, 10, 6279. [Google Scholar] [CrossRef]
- Itoh, H.; Uemura, T.; Yamaguchi, H.; Naka, S. Chemical vapour deposition of epitaxial Ni-Zn ferrite films by thermal decomposition of acetylacetonato complexes. J. Mater. Sci. 1989, 24, 3549–3552. [Google Scholar] [CrossRef]
- Stoia, M.; Barvinschi, P.; Tudoran, L.B.; Barbu, M.; Stefanescu, M. Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors. J. Therm. Anal. Calorim. 2012, 108, 1033–1039. [Google Scholar] [CrossRef]
- Jeremić, D.; Andjelković, L.; Milenković, M.R.; Šuljagić, M.; Ristović, M.Š.; Ostojić, S.; Nikolić, A.S.; Vulić, P.; Brčeski, I.; Pavlović, V. One-pot combustion synthesis of nickel oxide and hematite: From simple coordination compounds to high purity metal oxide nanoparticles. Sci. Sinter. 2020, 52, 481–490. [Google Scholar] [CrossRef]
- Iacob, M.; Racles, C.; Tugui, C.; Stiubianu, G.; Bele, A.; Sacarescu, L.; Timpu, D.; Cazacu, M. From iron coordination compounds to metal oxide nanoparticles. Beilstein J. Nanotechnol. 2016, 7, 2074–2087. [Google Scholar] [CrossRef] [Green Version]
- Jesus, J.C.D.; González, I.; Quevedo, A.; Puerta, T. Thermal decomposition of nickel acetate tetrahydrate: An integrated study by TGA, QMS and XPS techniques. J. Mol. Catal. A Chem. 2005, 228, 283–291. [Google Scholar] [CrossRef]
- Kumar, N.; Kachroo, P.L.; Kant, R. Thermal decomposition of some N-oxide complexes of cobalt(II), nickel(II) and copper(II) carboxylates. J. Therm. Anal. 1979, 17, 81–85. [Google Scholar] [CrossRef]
- Dollimore, D.; Pearce, J. Changes in the surface characteristics of residues from the thermal decomposition of nickel oxysalts. J. Therm. Anal. 1974, 6, 321–333. [Google Scholar] [CrossRef]
- Sun, Z.-L. Characteristics of thermal decomposition products of rare earth, alkali earth metal and transition metal p toluenesulfonates. J. Therm. Anal. Calorim. 2005, 79, 731–735. [Google Scholar] [CrossRef]
- García, A.R.; Laverat, A.G.; Prudencio, C.V.R.; Méndez, A.J. Synthesis and thermal decomposition of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) m-benzenedisulphonates. Thermochim. Acta 1993, 213, 199–210. [Google Scholar] [CrossRef]
- Fereshteh, Z.; Salavati-Niasari, M. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds. Adv. Colloid Interface Sci. 2017, 243, 86–104. [Google Scholar] [CrossRef]
- Šuljagić, M.; Vulić, P.; Jeremić, D.; Pavlović, V.; Filipović, S.; Kilanski, L.; Lewinska, S.; Slawska-Waniewska, A.; Milenković, M.R.; Nikolić, A.S.; et al. The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. Mater. Res. Bull. 2021, 134, 111117. [Google Scholar] [CrossRef]
- Andjelković, L.; Jeremić, D.; Milenković, M.R.; Radosavljević, J.; Vulić, P.; Pavlović, V.; Manojlović, D.; Nikolić, A.S. Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles. Ceram. Int. 2020, 46, 3528–3533. [Google Scholar] [CrossRef]
- Kilanski, L.; Lewinska, S.; Slawska-Waniewska, A.; Pavlović, V.B.; Filipović, S. Attempts to obtain BaTiO3/Fe2O3 core-shell type structures: The role of iron oxide nanoparticle formation and agglomeration. Inorg. Chem. Commun. 2022, 145. [Google Scholar] [CrossRef]
- Syazwan, M.M.; Hapishah, A.N.; Azis, R.S.; Abbas, Z.; Hamidon, M.N. Grain growth effects on magnetic properties of Ni0.6Zn0.4Fe2O4 material prepared using mechanically alloyed nanoparticles. Results Phys. 2018, 9, 842–850. [Google Scholar] [CrossRef]
- Ranga Mohan, G.; Ravinder, D.; Ramana Reddy, A.V.; Boyanov, B.S. Dielectric properties of polycrystalline mixed nickel–zinc ferrites. Mater. Lett. 1999, 40, 39–45. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, N.; Bhargava, R.; Sahni, M.; Sung, K.; Jung, J.H. Magnetodielectric effect in BaTiO3/ZnFe2O4 core/shell nanoparticles. J. Alloys Compd. 2014, 587, 437–441. [Google Scholar] [CrossRef]
- Yu, Z.; Ang, C. Maxwell–Wagner polarization in ceramic composites BaTiO3–(Ni0.3Zn0.7)Fe2.1O4. J. Appl. Phys. 2001, 91, 794–797. [Google Scholar] [CrossRef]
- Bammannavar, B.K.; Naik, L.R. Electrical properties and magnetoelectric effect in (x)Ni0.5Zn0.5Fe2O4+(1−x)BPZT composites. Smart Mater. Struct. 2009, 18, 85013. [Google Scholar] [CrossRef]
- Curecheriu, L.P.; Buscaglia, M.T.; Buscaglia, V.; Mitoseriu, L.; Postolache, P.; Ianculescu, A.; Nanni, P. Functional properties of BaTiO3–Ni0.5Zn0.5Fe2O4 magnetoelectric ceramics prepared from powders with core-shell structure. J. Appl. Phys. 2010, 107, 104106. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance Spectroscopy: Emphasizing Solid Materials and Systems; Wiley: Hoboken, NY, USA, 1987. [Google Scholar]
- Nuzhnyy, D.; Bovtun, V.; Savinov, M.; Kempa, M.; Petzelt, J.; Kaman, O.; Klementová, M.; Kuličková, J.; Jirák, Z. Synthesis and broadband dielectric-infrared spectroscopy of La1−xSrxMnO3@BaTiO3 nanocomposite. Mater. Res. Bull. 2021, 144, 111459. [Google Scholar] [CrossRef]
- Petzelt, J.; Nuzhnyy, D.; Bovtun, V.; Savinov, M.; Kempa, M.; Rychetsky, I. Broadband dielectric and conductivity spectroscopy of inhomogeneous and composite conductors. Phys. Status Solidi Appl. Mater. Sci. 2013, 210, 2259–2271. [Google Scholar] [CrossRef]
- Jonscher, A.K. A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 1981, 16, 2037–2060. [Google Scholar] [CrossRef]
- Dzunuzovic, A.S.; Petrovic, M.M.V.; Bobic, J.D.; Ilic, N.I.; Stojanovic, B.D. Influence of ferrite phase on electrical properties of the barium zirconium titanate based multiferroic composites. J. Electroceramics 2021, 46, 57–71. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lai, B.C. Chapter 1—The electrical properties of high-dielectric-constant and ferroelectric thin films for very large scale integration circuits. In Handbook of Thin Films; Singh Nalwa, H., Ed.; Academic Press: Burlington, VT, USA, 2002; pp. 1–98. ISBN 978-0-12-512908-4. [Google Scholar]
- Kundu, T.K.; Lee, J.Y. Thickness-Dependent Electrical Properties of Pb(Zr,Ti)O3 Thin Film Capacitors for Memory Device Applications. J. Electrochem. Soc. 2000, 147, 326. [Google Scholar] [CrossRef]
- Andjelković, L.; Šuljagić, M.; Lakić, M.; Jeremić, D.; Vulić, P.; Nikolić, A.S. A study of the structural and morphological properties of Ni–ferrite, Zn–ferrite and Ni–Zn–ferrites functionalized with starch. Ceram. Int. 2018, 44, 14163–14168. [Google Scholar] [CrossRef]
Samples | Phase | ||
---|---|---|---|
BaTiO3/NiFe2O4 as-prepared | BaTiO3 Tetragonal (P4mm) PDF # 01-078-2738 57(2)% | Ni1.3Fe1.7O4 Spinel (Fd-3m) PDF # 01-080-0072 43(2)% | / |
BaTiO3/ZnFe2O4 as-prepared | BaTiO3 Tetragonal (P4mm) PDF # 01-081-8524 66.3(6)% | ZnFe2O4 Spinel (Fd-3m) PDF # 01-083-442 29.4(5)% | ZnO Wurtzite (P63mc) PDF # 01-070-8070 4.3(2)% |
BaTiO3/Ni0.5Zn0.5Fe2O4 as-prepared | BaTiO3 Tetragonal (P4mm) PDF # 01-083-8300 60(1)% | NixZn1−xFe2O4 Spinel (Fd-3m) PDF # 01-080-4511 40(1)% | BaTiNiFe10O19 (P63/mmc) PDF # 00-054-0776 >1% |
BaTiO3/NiFe2O4 1150 °C | BaTiO3 Tetragonal (P4mm) PDF # 01-083-8300 77(2)% | Ni1.25Fe1.85O4 Spinel (Fd-3m) PDF # 01-088-0380 19(2)% | BaFe11.9O19/ BaTiNiFe10O19 PDF # 01-079-1742/00-054-0776 (P63/mmc) 4(1)% |
BaTiO3/ZnFe2O4 1150 °C | BaTiO3 Tetragonal (P4mm) PDF # 00-005-0626 50(5)% | ZnFe2O4 Spinel (Fd-3m) PDF # 01-078-5429 46(4)% | BaTi0.636Fe0.364O2.804 PDF # 01-089-4607 4(1)% BaTiZnFe10O19 PDF # 00-054-1246 >1% |
BaTiO3/Ni0.5Zn0.5Fe2O4 1150 °C | BaTiO3 Tetragonal (P4mm) PDF # 01-074-4540 40(1)% | NixZn1−xFe2O4 Spinel (Fd-3m) PDF # 01-077-9652 24(1)% | BaTiNiFe10O19 (P63/mmc) PDF # 00-054-0776 >1% Ni0.8Zn0.2O PDF # 01-071-6735 36(1)% |
BaTiO3/NiFe2O4 1300 °C | BaTiO3 Tetragonal (P4/mmm) PDF # 01-079-2264 71.1(4)% | Ni0.4Fe2.6O4 Spinel (Fd-3m) PDF # 01-087-2335 23.5(3)% | BaFe0.67Ti0.33O2.952 PDF # 01-089-0949 (P63/mmc) 5.4(5)% |
BaTiO3/ZnFe2O4 1300 °C | BaTiO3 Tetragonal (P4/mmm) PDF # 01-079-2264 63.5(3)% | ZnFe2O4 Spinel (Fd-3m) PDF # 01-078-5429 29.6(2)% | BaFe0.125Ti0.875O2.92 (P63/mmc) PDF # 01-089-4605 6.9(3)%. |
BaTiO3/Ni0.5Zn0.5Fe2O4 1300 °C | BaTiO3 Tetragonal (P4/mmm) PDF # 01-079-2264 56(3)% | Ni0.8Zn0.2Fe2O4 Spinel (Fd-3m) PDF # 01-077-9719 34(3)% | BaFe0.25Ti0.75O2.888 (P63/mmc) PDF # 01-089-4604 9(1)% Ni0.02Zn0.98O PDF # 01-080-3507 1.0(1)% |
Sample | M [emu/g] |
---|---|
BaTiO3/NiFe2O4 1150 °C | 12.46 |
BaTiO3/ZnFe2O4 1150 °C | 1.74 |
BaTiO3/Ni0.5Zn0.5Fe2O4 1150 °C | 17.26 |
BaTiO3/NiFe2O4 1300 °C | 9.26 |
BaTiO3/ZnFe2O4 1300 °C | 0.06 |
BaTiO3/Ni0.5Zn0.5Fe2O4 1300 °C | 17.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šuljagić, M.; Petronijević, I.; Mirković, M.M.; Kremenović, A.; Džunuzović, A.; Pavlović, V.B.; Kalezić-Glišović, A.; Andjelković, L. BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties. Inorganics 2023, 11, 51. https://doi.org/10.3390/inorganics11020051
Šuljagić M, Petronijević I, Mirković MM, Kremenović A, Džunuzović A, Pavlović VB, Kalezić-Glišović A, Andjelković L. BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties. Inorganics. 2023; 11(2):51. https://doi.org/10.3390/inorganics11020051
Chicago/Turabian StyleŠuljagić, Marija, Ivan Petronijević, Miljana M. Mirković, Aleksandar Kremenović, Adis Džunuzović, Vladimir B. Pavlović, Aleksandra Kalezić-Glišović, and Ljubica Andjelković. 2023. "BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties" Inorganics 11, no. 2: 51. https://doi.org/10.3390/inorganics11020051
APA StyleŠuljagić, M., Petronijević, I., Mirković, M. M., Kremenović, A., Džunuzović, A., Pavlović, V. B., Kalezić-Glišović, A., & Andjelković, L. (2023). BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties. Inorganics, 11(2), 51. https://doi.org/10.3390/inorganics11020051