A Theoretical Design of Chiral Molecules through Conformational Lock towards Circularly Polarized Luminescence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption Analysis
2.2. Emission Analysis
2.3. Chirality Transformation
2.4. Calculation Verification
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakano, T.; Shikisai, Y.; Okamoto, Y. Helix-Sense-Selective Polymerization of 1-Phenyldibenzosuberyl Methacrylate by Free Radical Mechanism. Proc. Jpn. Acad. Ser. B 1995, 71, 251–255. [Google Scholar] [CrossRef]
- Brandt, J.R.; Salerno, F.; Fuchter, M.J. The Added Value of Small-molecule Chirality in Technological Applications. Nat. Rev. Chem. 2017, 1, 0045. [Google Scholar] [CrossRef]
- Nolte, R.J.M. Helical Poly(isocyanides). Chem. Soc. Rev. 1994, 23, 11–19. [Google Scholar] [CrossRef]
- Kane-Maguire, L.A.P.; Wallace, G.G. Chiral Conducting Polymers. Chem. Soc. Rev. 2010, 39, 2545–2576. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Sang, Y.; Shi, Y.; Li, Y.; Zhu, X.; Duan, P.; Liu, M. Optically Active Upconverting Nanoparticles with Induced Circularly Polarized Luminescence and Enantioselectively Triggered Photopolymerization. ACS Nano 2019, 13, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Thomas, K.G.; Liz-Marzan, L.M. Nanoscale Chirality in Metal and Semiconductor Nanoparticles. Chem. Commun. 2016, 52, 12555–12569. [Google Scholar] [CrossRef] [PubMed]
- Bisht, K.K.; Parmar, B.; Rachuri, Y.; Kathalikattil, A.C.; Suresh, E. Progress in the Synthetic and Functional Aspects of Chiral Metal–organic Frameworks. CrystEngComm 2015, 17, 5341–5356. [Google Scholar] [CrossRef]
- Brandt, J.R.; Wang, X.; Yang, Y.; Campbell, A.J.; Fuchter, M.J. Circularly Polarized Phosphorescent Electroluminescence with a High Dissymmetry Factor from PHOLEDs Based on a Platinahelicene. J. Am. Chem. Soc. 2016, 138, 9743–9746. [Google Scholar] [CrossRef]
- Yang, Y.; da Costa, R.C.; Smilgies, D.M.; Campbell, A.J.; Fuchter, M.J. Induction of Circularly Polarized Electroluminescence from an Achiral Light-Emitting Polymer via a Chiral Small-Molecule Dopant. Adv. Mater. 2013, 25, 2624–2628. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef]
- Mao, X.; Zhao, H.; Luo, L.; Tian, D.; Li, H. Highly Sensitive Chiral Recognition of Amino Propanol in Serum with R-mandelic Acid-linked Calix[4]arene Modified Graphene. J. Mater. Chem. C 2015, 3, 1325–1329. [Google Scholar] [CrossRef]
- Guo, L.; Huang, Y.; Zhang, Q.; Chen, C.; Guo, D.; Chen, Y.; Fu, Y. Electrochemical Sensing for Naproxen Enantiomers Using Biofunctionalized Reduced Graphene Oxide Nanosheets. J. Electrochem. Soc. 2014, 161, B70–B74. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Guo, L.; Chen, C.; Guo, D.; Chen, Y.; Fu, Y. DNA-based Nanocomposite as Electrochemical Chiral Sensing Platform for the Enantioselective Interaction with Quinine and Quinidine. New J. Chem. 2014, 38, 4600–4606. [Google Scholar] [CrossRef]
- Zhang, D.W.; Li, M.; Chen, C.F. Recent Advances in Circularly Polarized Electroluminescence Based on Organic Light-emitting Diodes. Chem. Soc. Rev. 2020, 49, 1331–1343. [Google Scholar] [CrossRef] [PubMed]
- Wagenknecht, C.; Li, C.M.; Reingruber, A.; Bao, X.H.; Goebel, A.; Chen, Y.A.; Zhang, Q.; Chen, K.; Pan, J.W. Experimental Demonstration of a Heralded Entanglement Source. Nat. Photonics 2010, 4, 549–552. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical Communications Using Orbital Angular Momentum Beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Shen, C.; Loas, G.h.; Srebro-Hooper, M.; Vanthuyne, N.; Toupet, L.; Cador, O.; Paul, F.; López Navarrete, J.T.; Ramírez, F.J.; Nieto-Ortega, B.; et al. Iron Alkynyl Helicenes: Redox-Triggered Chiroptical Tuning in the IR and Near-IR Spectral Regions and Suitable for Telecommunications Applications. Angew. Chem. Int. Ed. 2016, 55, 8062–8066. [Google Scholar] [CrossRef]
- Kim, D.Y. Potential Application of Spintronic Light-emitting Diode to Binocular Vision for Three-dimensional Display Technology. J. Korean Phys. Soc. 2006, 49, S505–S508. [Google Scholar]
- Long, G.; Adamo, G.; Tian, J.; Klein, M.; Krishnamoorthy, H.N.S.; Feltri, E.; Wang, H.; Soci, C. Perovskite Metasurfaces with Large Superstructural Chirality. Nat. Commun. 2022, 13, 1551. [Google Scholar] [CrossRef]
- Sroor, H.; Huang, Y.W.; Sephton, B.; Naidoo, D.; Vallés, A.; Ginis, V.; Qiu, C.W.; Ambrosio, A.; Capasso, F.; Forbes, A. High-purity Orbital Angular Momentum States from a Visible Metasurface Laser. Nat. Photonics 2020, 14, 498–503. [Google Scholar] [CrossRef]
- Cai, X.; Wang, J.; Strain Michael, J.; Johnson-Morris, B.; Zhu, J.; Sorel, M.; O’Brien Jeremy, L.; Thompson Mark, G.; Yu, S. Integrated Compact Optical Vortex Beam Emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; An, T.; Wang, L.; Xu, X.; Sun, H. Novel Properties and Applications of Chiral Inorganic Nanostructures. Nano Today 2020, 30, 100824. [Google Scholar] [CrossRef]
- Döring, A.; Ushakova, E.; Rogach, A.L. Chiral Carbon Dots: Synthesis, Optical Properties, and Emerging Applications. Light Sci. Appl. 2022, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Long, G.; Jiang, C.; Sabatini, R.; Yang, Z.; Wei, M.; Quan, L.N.; Liang, Q.; Rasmita, A.; Askerka, M.; Walters, G.; et al. Spin Control in Reduced-dimensional Chiral Perovskites. Nat. Photonics 2018, 12, 528–533. [Google Scholar] [CrossRef]
- Long, G.; Zhou, Y.; Zhang, M.; Sabatini, R.; Rasmita, A.; Huang, L.; Lakhwani, G.; Gao, W. Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Adv. Mater. 2019, 31, 1807628. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, C.; van Son, M.H.C.; Di Nuzzo, D.; Meskers, S.C.J.; Palmans, A.R.A.; Meijer, E.W. Molecular Design Principles for Achieving Strong Chiroptical Properties of Fluorene Copolymers in Thin Films. Chem. Mater. 2019, 31, 6633–6641. [Google Scholar] [CrossRef]
- Di Nuzzo, D.; Kulkarni, C.; Zhao, B.; Smolinsky, E.; Tassinari, F.; Meskers, S.C.J.; Naaman, R.; Meijer, E.W.; Friend, R.H. High Circular Polarization of Electroluminescence Achieved via Self-Assembly of a Light-Emitting Chiral Conjugated Polymer into Multidomain Cholesteric Films. ACS Nano 2017, 11, 12713–12722. [Google Scholar] [CrossRef]
- Wan, L.; Wade, J.; Salerno, F.; Arteaga, O.; Laidlaw, B.; Wang, X.; Penfold, T.; Fuchter, M.J.; Campbell, A.J. Inverting the Handedness of Circularly Polarized Luminescence from Light-Emitting Polymers Using Film Thickness. ACS Nano 2019, 13, 8099–8105. [Google Scholar] [CrossRef]
- Li, T.; Guo, H.; Wang, Y.; Ouyang, G.; Wang, Q.Q.; Liu, M. Chiral Macrocycle-induced Circularly Polarized Luminescence of a Twisted Intramolecular Charge Transfer Dye. Chem. Commun. 2021, 57, 13554–13557. [Google Scholar] [CrossRef]
- Jimenez, J.; Cerdan, L.; Moreno, F.; Maroto, B.L.; Garcia-Moreno, I.; Lunkley, J.L.; Muller, G.; de la Moya, S. Chiral Organic Dyes Endowed with Circularly Polarized Laser Emission. J. Phys. Chem. C 2017, 121, 5287–5292. [Google Scholar] [CrossRef]
- Barnett, C.J.; Drake, A.F.; Mason, S.F. The Polarized Luminescence and Vibrational Optical Activity of Calycanthine. Bull. Soc. Chim. Belg. 1979, 88, 853–862. [Google Scholar] [CrossRef]
- Leventis, A.; Royakkers, J.; Rapidis, A.G.; Goodeal, N.; Corpinot, M.K.; Frost, J.M.; Bucar, D.K.; Blunt, M.O.; Cacialli, F.; Bronstein, H. Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole. J. Am. Chem. Soc. 2018, 140, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.; Bohle, F.; Fang, W.; Walther, A.; Grimme, S.; Esser, B. Raising the Bar in Aromatic Donor-Acceptor Interactions with Cyclic Trinuclear Gold(I) Complexes as Strong Pi-donors. J. Am. Chem. Soc. 2018, 140, 17932–17944. [Google Scholar] [CrossRef]
- Zhao, Y.; Sakai, N.; Matile, S. Enolate Chemistry with Anion-pi Interactions. Nat. Commun. 2014, 5, 3911. [Google Scholar] [CrossRef] [PubMed]
- Moss, G.P. Basic Terminology of Stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2193–2222. [Google Scholar] [CrossRef]
- De Cremer, L.; Verbiest, T.; Koeckelberghs, G. Influence of the Substituent on the Chiroptical Properties of Poly(thieno[3,2-b]thiophene)s. Macromolecules 2008, 41, 568–578. [Google Scholar] [CrossRef]
- Blout, E.R.; Stryer, L. Anomalous Optical Rotatary Dispersion of Dye: Polypeptide Complexes. Proc. Natl. Acad. Sci. USA 1959, 45, 1591–1593. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Li, Y.; Quan, Y.; Cheng, Y.; Li, Y. High Brightness Circularly Polarized Blue Emission from Non-doped OLEDs Based on Chiral Binaphthyl-pyrene Emitters. Chem. Commun. 2019, 55, 9845–9848. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, H.; Quan, Y.; Li, Y.; Cheng, Y.; Ye, S. High Brightness Circularly Polarized Organic Light-Emitting Diodes Based on Nondoped Aggregation-Induced Emission (AIE)-Active Chiral Binaphthyl Emitters. Org. Lett. 2019, 21, 439–443. [Google Scholar] [CrossRef]
- Sakai, H.; Shinto, S.; Kumar, J.; Araki, Y.; Sakanoue, T.; Takenobu, T.; Wada, T.; Kawai, T.; Hasobe, T. Highly Fluorescent [7] Carbohelicene Fused by Asymmetric 1,2-dialkyl-substituted Quinoxaline for Circularly Polarized Luminescence and Electroluminescence. J. Phys. Chem. C 2015, 119, 13937–13947. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Zhang, T.; Xie, Z.; Zhang, X.; Sun, H.; Xiao, Y.; Yu, T.; Huang, W. Breaching Kasha’s Rule for Dual Emission: Mechanisms, Materials and Applications. J. Mater. Chem. C 2021, 9, 10154–10172. [Google Scholar] [CrossRef]
- Shi, L.; Yan, C.; Guo, Z.; Chi, W.; Wei, J.; Liu, W.; Liu, X.; Tian, H.; Zhu, W.H. De Novo Strategy with Engineering Anti-Kasha/Kasha Fluorophores Enables Reliable Ratiometric Quantification of Biomolecules. Nat. Commun. 2020, 11, 793. [Google Scholar] [CrossRef] [PubMed]
glum | 392 nm | 608 nm |
---|---|---|
(R, R)-CDPP-11 | −3.38 × 10−2 | −3.39 × 10−4 |
(S, S)-CDPP-11 | 4.50 × 10−2 | 3.78 × 10−4 |
(R, R)-CDPP-16 | −7.04 × 10−2 | −4.34 × 10−4 |
(R, R)-CDPP-18 | −9.20 × 10−2 | −5.06 × 10−4 |
(R, R)-CDPP-20 | −5.08 × 10−2 | −4.13 × 10−4 |
(R, R)-CDPP-22 | −9.73 × 10−2 | −5.06 × 10−4 |
(R, R)-CDPP-24 | −7.69 × 10−2 | −4.28 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; He, T.; Liao, H.; Luo, Y.; Ou, W.; Yu, Y.; Yue, W.; Long, G.; Wei, X.; Zhou, Y. A Theoretical Design of Chiral Molecules through Conformational Lock towards Circularly Polarized Luminescence. Photonics 2022, 9, 532. https://doi.org/10.3390/photonics9080532
Wang L, He T, Liao H, Luo Y, Ou W, Yu Y, Yue W, Long G, Wei X, Zhou Y. A Theoretical Design of Chiral Molecules through Conformational Lock towards Circularly Polarized Luminescence. Photonics. 2022; 9(8):532. https://doi.org/10.3390/photonics9080532
Chicago/Turabian StyleWang, Lewen, Tengfei He, Hailiang Liao, Yige Luo, Wen Ou, Yinye Yu, Wan Yue, Guankui Long, Xingzhan Wei, and Yecheng Zhou. 2022. "A Theoretical Design of Chiral Molecules through Conformational Lock towards Circularly Polarized Luminescence" Photonics 9, no. 8: 532. https://doi.org/10.3390/photonics9080532
APA StyleWang, L., He, T., Liao, H., Luo, Y., Ou, W., Yu, Y., Yue, W., Long, G., Wei, X., & Zhou, Y. (2022). A Theoretical Design of Chiral Molecules through Conformational Lock towards Circularly Polarized Luminescence. Photonics, 9(8), 532. https://doi.org/10.3390/photonics9080532