Cherenkov Luminescence in Tumor Diagnosis and Treatment: A Review
Abstract
:1. Introduction
2. The Generation and Characteristics of Cherenkov Luminescence
3. Imaging Technology Using Cherenkov Luminescence
3.1. Cherenkov Luminescence Imaging
3.2. Cherenkov Luminescence Endoscope
3.3. Cherenkov Luminescence Tomography
4. Cherenkov Luminescence Applications in Tumor Treatment
4.1. Surgical Resection
4.2. Radiotherapy
4.3. Photodynamic Therapy
4.4. Tumor Microenvironment Monitoring in Treatment
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Jain, R.K.; Langer, R. Engineering and physical sciences in oncology: Challenges and opportunities. Nat. Rev. Cancer 2017, 17, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for cancers of unknown primary. Nature 2021, 594, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Navin, N.E. Tumor Evolution in Response to Chemotherapy: Phenotype versus Genotype. Cell Rep. 2014, 6, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaszczak, W.; Swietach, P. What do cellular responses to acidity tell us about cancer? Cancer Metastasis Rev. 2021, 40, 1159–1176. [Google Scholar] [CrossRef]
- Weissleder, R. Molecular imaging in cancer. Science 2006, 312, 1168–1171. [Google Scholar] [CrossRef] [Green Version]
- Gambhir, S.S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002, 2, 683–693. [Google Scholar] [CrossRef]
- Han, Z.; Ke, M.; Liu, X.; Wang, J.; Guan, Z.; Qiao, L.; Wu, Z.; Sun, Y.; Sun, X. Molecular Imaging, How Close to Clinical Precision Medicine in Lung, Brain, Prostate and Breast Cancers. Mol. Imaging Biol. 2021, 24, 8–22. [Google Scholar] [CrossRef]
- Zhong, Y.; Ma, Z.; Wang, F.; Wang, X.; Yang, Y.; Liu, Y.; Zhao, X.; Li, J.; Du, H.; Zhang, M.; et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322–1331. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Zhou, Q.; Chen, Z. Advances in Endoscopic Photoacoustic Imaging. Photonics 2021, 8, 281. [Google Scholar] [CrossRef]
- Weissleder, R. Molecular imaging: Exploring the next frontier. Radiology 1999, 212, 609–614. [Google Scholar] [CrossRef]
- Mankoff, D.A.; Farwell, M.D.; Clark, A.S.; Pryma, D.A. Making Molecular Imaging a Clinical Tool for Precision Oncology: A Review. JAMA Oncol. 2017, 3, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sun, Y.; Wu, S.; Zhou, M.; Zhang, X.; Zhou, R.; Zhang, T.; Gao, Y.; Chen, T.; Chen, Y.; et al. Systematic imaging in medicine: A comprehensive review. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1736–1758. [Google Scholar] [CrossRef] [PubMed]
- Mankoff, D.A. A definition of molecular imaging. J. Nucl. Med. 2007, 48, 18N–21N. [Google Scholar] [PubMed]
- James, M.L.; Gambhir, S.S. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol. Rev. 2012, 92, 897–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Shu, J. Multimodal molecular imaging: Current status and future directions. Contrast Media Mol. Imaging 2018, 2018, 1382183. [Google Scholar] [CrossRef] [Green Version]
- De Vries, E.G.E.; Kist de Ruijter, L.; Lub-de Hooge, M.N.; Dierckx, R.A.; Elias, S.G.; Oosting, S.F. Integrating molecular nuclear imaging in clinical research to improve anticancer therapy. Nat. Rev. Clin. Oncol. 2019, 16, 241–255. [Google Scholar] [CrossRef]
- Koch, M.; Symvoulidis, P.; Ntziachristos, V. Tackling standardization in fluorescence molecular imaging. Nat. Photonics 2018, 12, 505–515. [Google Scholar] [CrossRef]
- Garland, M.; Yim, J.J.; Bogyo, M. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application. Cell Chem. Biol. 2016, 23, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Berrones-Reyes, J.C.; Vidyasagar, C.C.; Muñoz Flores, B.M.; Jiménez-Pérez, V.M. Luminescent molecules of main group elements: Recent advances on synthesis, properties and their application on fluorescent bioimaging (FBI). J. Lumin. 2018, 195, 290–313. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, D.; Wang, Z.; Xie, L.; Ying, Y. Spatial-Frequency Domain Imaging: An Emerging Depth-Varying and Wide-Field Technique for Optical Property Measurement of Biological Tissues. Photonics 2021, 8, 162. [Google Scholar] [CrossRef]
- Grootendorst, M.R.; Cariati, M.; Kothari, A.; Tuch, D.S.; Purushotham, A. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin. Transl. Imaging 2016, 4, 353–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem. Soc. Rev. 2017, 46, 2237–2271. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, T.M.; Drain, C.M.; Grimm, J. Optical Imaging of Ionizing Radiation from Clinical Sources. J. Nucl. Med. 2016, 57, 1661–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogue, B.W.; Zhang, R.; Cao, X.; Jia, J.M.; Petusseau, A.; Bruza, P.; Vinogradov, S.A. Review of in vivo optical molecular imaging and sensing from X-ray excitation. J. Biomed. Opt. 2021, 26, 010902. [Google Scholar] [CrossRef]
- Collins, G.B.; Reiling, V.G. Cerenkov radiation. Phys. Rev. 1938, 54, 499. [Google Scholar] [CrossRef]
- Mc Larney, B.; Skubal, M.; Grimm, J. A Review of Recent and Emerging Approaches for the Clinical Application of Cerenkov Luminescence Imaging. Front. Phys. 2021, 9, 419. [Google Scholar] [CrossRef]
- Branger, E.; Grape, S.; Jansson, P.; Svärd, S.J. On the inclusion of light transport in prediction tools for Cherenkov light intensity assessment of irradiated nuclear fuel assemblies. J. Instrum. 2019, 14, T01010. [Google Scholar] [CrossRef]
- Tamura, R.; Pratt, E.C.; Grimm, J. Innovations in nuclear imaging instrumentation: Cerenkov imaging. In Seminars in Nuclear Medicine; WB Saunders: Philadelphia, PA, USA, 2018; pp. 359–366. [Google Scholar]
- Hu, H.; Lin, X.; Wong, L.J.; Yang, Q.; Liu, D.; Zhang, B.; Luo, Y. Surface Dyakonov–Cherenkov radiation. eLight 2022, 2, 2. [Google Scholar] [CrossRef]
- Katori, T.; Yanez, J.P.; Yuan, T. Neutrino interaction physics in neutrino telescopes. Eur. Phys. J. Spec. Top. 2021, 230, 4293–4308. [Google Scholar] [CrossRef]
- Mitchell, G.S.; Lloyd, P.N.T.; Cherry, S.R. Cerenkov luminescence and PET imaging of (90)Y: Capabilities and limitations in small animal applications. Phys. Med. Biol. 2020, 65, 065006. [Google Scholar] [CrossRef]
- Bhatt, N.B.; Pandya, D.N.; Dezarn, W.A.; Marini, F.C.; Zhao, D.; Gmeiner, W.H.; Triozzi, P.L.; Wadas, T.J. Practical Guidelines for Cerenkov Luminescence Imaging with Clinically Relevant Isotopes. Methods Mol. Biol. 2018, 1790, 197–208. [Google Scholar] [CrossRef]
- Pétusseau, A.F.; Bruza, P.; Pogue, B.W. Survey of X-ray induced Cherenkov excited fluorophores with potential for human use. J. Radiat. Res. 2021, 62, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Allu, S.R.; Jiang, S.; Gunn Bs, J.R.; Yao Ph, D.C.; Xin Ph, D.J.; Bruza Ph, D.P.; Gladstone Sc, D.D.; Jarvis Md Ph, D.L.; Tian Ph, D.J.; et al. High-Resolution pO(2) Imaging Improves Quantification of the Hypoxic Fraction in Tumors During Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ren, G.; Miao, Z.; Zhang, X.; Tang, X.; Han, P.; Gambhir, S.S.; Cheng, Z. Molecular optical imaging with radioactive probes. PLoS ONE 2010, 5, e9470. [Google Scholar] [CrossRef] [PubMed]
- Glaser, A.K.; Zhang, R.; Gladstone, D.J.; Pogue, B.W. Optical dosimetry of radiotherapy beams using Cherenkov radiation: The relationship between light emission and dose. Phys. Med. Biol. 2014, 59, 3789–3811. [Google Scholar] [CrossRef]
- Hachadorian, R.L.; Bruza, P.; Jermyn, M.; Gladstone, D.J.; Pogue, B.W.; Jarvis, L.A. Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light. Nat. Commun. 2020, 11, 2298. [Google Scholar] [CrossRef] [PubMed]
- Glaser, A.K.; Andreozzi, J.M.; Davis, S.C.; Zhang, R.; Pogue, B.W.; Fox, C.J.; Gladstone, D.J. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation. Med. Phys. 2014, 41, 062102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Glaser, A.K.; Andreozzi, J.; Jiang, S.; Jarvis, L.A.; Gladstone, D.J.; Pogue, B.W. Beam and tissue factors affecting Cherenkov image intensity for quantitative entrance and exit dosimetry on human tissue. J. Biophotonics 2017, 10, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Hachadorian, R.; Bruza, P.; Jermyn, M.; Mazhar, A.; Cuccia, D.; Jarvis, L.; Gladstone, D.; Pogue, B. Correcting Cherenkov light attenuation in tissue using spatial frequency domain imaging for quantitative surface dosimetry during whole breast radiation therapy. J. Biomed. Opt. 2018, 24, 071609. [Google Scholar] [CrossRef]
- Zlateva, Y.; Muir, B.R.; El Naqa, I.; Seuntjens, J.P. Cherenkov emission-based external radiotherapy dosimetry: I. Formalism and feasibility. Med. Phys. 2019, 46, 2370–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlateva, Y.; Muir, B.R.; Seuntjens, J.P.; El Naqa, I. Cherenkov emission-based external radiotherapy dosimetry: II. Electron beam quality specification and uncertainties. Med. Phys. 2019, 46, 2383–2393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Andreozzi, J.M.; Gladstone, D.J.; Hitchcock, W.L.; Glaser, A.K.; Jiang, S.; Pogue, B.W.; Jarvis, L.A. Cherenkoscopy based patient positioning validation and movement tracking during post-lumpectomy whole breast radiation therapy. Phys. Med. Biol. 2015, 60, L1–L14. [Google Scholar] [CrossRef]
- Snyder, C.; Pogue, B.W.; Jermyn, M.; Tendler, I.; Andreozzi, J.M.; Bruza, P.; Krishnaswamy, V.; Gladstone, D.J.; Jarvis, L.A. Algorithm development for intrafraction radiotherapy beam edge verification from Cherenkov imaging. J. Med. Imaging (Bellingham) 2018, 5, 015001. [Google Scholar] [CrossRef] [PubMed]
- Glaser, A.K.; Voigt, W.; Davis, S.C.; Zhang, R.; Gladstone, D.J.; Pogue, B.W. Three-dimensional erenkov tomography of energy deposition from ionizing radiation beams. Opt. Lett. 2013, 38, 634–636. [Google Scholar] [CrossRef]
- Glaser, A.K.; Davis, S.C.; McClatchy, D.M.; Zhang, R.; Pogue, B.W.; Gladstone, D.J. Projection imaging of photon beams by the Čerenkov effect. Med. Phys. 2013, 40, 012101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogo, K.; Matsushita, A.; Tatsuno, Y.; Shimo, T.; Hirota, S.; Nozawa, M.; Ozawa, S.; Ishiyama, H.; Yasuda, H.; Nagata, Y.; et al. Imaging Cherenkov emission for quality assurance of high-dose-rate brachytherapy. Sci. Rep. 2020, 10, 3572. [Google Scholar] [CrossRef] [PubMed]
- Yogo, K.; Noguchi, Y.; Okudaira, K.; Nozawa, M.; Ishiyama, H.; Okamoto, H.; Yasuda, H.; Oguchi, H.; Yamamoto, S. Source position measurement by Cherenkov emission imaging from applicators for high-dose-rate brachytherapy. Med. Phys. 2021, 48, 488–499. [Google Scholar] [CrossRef]
- Alexander, D.A.; Bruza, P.; Rassias, A.G.; Andreozzi, J.M.; Pogue, B.W.; Zhang, R.; Gladstone, D.J. Visual Isocenter Position Enhanced Review (VIPER): A Cherenkov imaging-based solution for MR-linac daily QA. Med. Phys. 2021, 48, 2750–2759. [Google Scholar] [CrossRef]
- Hartl, B.; Hirschberg, H.; Marcu, L.; Cherry, S.R. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Kamkaew, A.; Cheng, L.; Goel, S.; Valdovinos, H.F.; Barnhart, T.E.; Liu, Z.; Cai, W. Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 26630–26637. [Google Scholar] [CrossRef] [Green Version]
- Duan, D.; Liu, H.; Xu, Y.; Han, Y.; Xu, M.; Zhang, Z.; Liu, Z. Activating TiO(2) Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy. ACS Appl. Mater. Interfaces 2018, 10, 5278–5286. [Google Scholar] [CrossRef]
- Blum, N.T.; Zhang, Y.; Qu, J.; Lin, J.; Huang, P. Recent Advances in Self-Exciting Photodynamic Therapy. Front. Bioeng. Biotechnol. 2020, 8, 594491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hao, Y.; Chen, S.; Xu, M. Photodynamic Therapy of Cancers With Internal Light Sources: Chemiluminescence, Bioluminescence, and Cerenkov Radiation. Front. Chem. 2020, 8, 770. [Google Scholar] [CrossRef] [PubMed]
- Bessière, A.; Durand, J.-O.; Noûs, C. Persistent luminescence materials for deep photodynamic therapy. Nanophotonics 2021, 10, 2999–3029. [Google Scholar] [CrossRef]
- Pham, T.C.; Nguyen, V.N.; Choi, Y.; Lee, S.; Yoon, J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef]
- Pogue, B.W.; Cao, X.; Swartz, H.M.; Vinogradov, S.A. Review of Tissue Oxygenation Sensing During Radiotherapy Based Upon Cherenkov-Excited Luminescence Imaging. Appl. Magn. Reson. 2021, 52, 1521–1536. [Google Scholar] [CrossRef]
- Pogue, B.W.; Feng, J.; LaRochelle, E.P.; Bruža, P.; Lin, H.; Zhang, R.; Shell, J.R.; Dehghani, H.; Davis, S.C.; Vinogradov, S.A.; et al. Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging. Nat. Biomed. Eng. 2018, 2, 254–264. [Google Scholar] [CrossRef]
- Rickard, A.G.; Yoshikawa, H.; Palmer, G.M.; Liu, H.Q.; Dewhirst, M.W.; Nolan, M.W.; Zhang, X. Cherenkov emissions for studying tumor changes during radiation therapy: An exploratory study in domesticated dogs with naturally-occurring cancer. PLoS ONE 2020, 15, e0238106. [Google Scholar] [CrossRef]
- Soter, J.A.; LaRochelle, E.P.M.; Byrd, B.K.; Tendler, I.I.; Gunn, J.R.; Meng, B.; Strawbridge, R.R.; Wirth, D.J.; Davis, S.C.; Gladstone, D.J.; et al. Tracking tumor radiotherapy response in vivo with Cherenkov-excited luminescence ink imaging. Phys. Med. Biol. 2020, 65, 095004. [Google Scholar] [CrossRef]
- Zhang, X.; Lam, S.K.; Palmer, G.; Das, S.; Oldham, M.; Dewhirst, M. Noninvasive measurement of tissue blood oxygenation with Cerenkov imaging during therapeutic radiation delivery. Opt. Lett. 2017, 42, 3101–3104. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, J.; Glaser, A.K.; Gladstone, D.J.; Pogue, B.W. Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment. Optics Express 2012, 20, 5133–5142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Gunn, J.R.; Allu, S.R.; Bruza, P.; Jiang, S.; Vinogradov, S.A.; Pogue, B.W. Implantable sensor for local Cherenkov-excited luminescence imaging of tumor pO2 during radiotherapy. J. Biomed. Opt. 2020, 25, 112704. [Google Scholar] [CrossRef]
- Cao, X.; Rao Allu, S.; Jiang, S.; Jia, M.; Gunn, J.R.; Yao, C.; LaRochelle, E.P.; Shell, J.R.; Bruza, P.; Gladstone, D.J.; et al. Tissue pO(2) distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nat. Commun. 2020, 11, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, G.S.; Gill, R.K.; Boucher, D.L.; Li, C.; Cherry, S.R. In vivo Cerenkov luminescence imaging: A new tool for molecular imaging. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4605–4619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Wang, J.; Cheng, Z. Cerenkov radiation: A multi-functional approach for biological sciences. Front. Phys. 2014, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Jelley, J.V. Cerenkov radiation and its applications. Br. J. Appl. Phys. 1955, 6, 227–232. [Google Scholar] [CrossRef]
- Shaffer, T.M.; Pratt, E.C.; Grimm, J. Utilizing the power of Cerenkov light with nanotechnology. Nat. Nanotechnol. 2017, 12, 106. [Google Scholar] [CrossRef]
- Shrock, Z.; Yoon, S.W.; Gunasingha, R.; Oldham, M.; Adamson, J. Technical Note: On maximizing Cherenkov emissions from medical linear accelerators. Med. Phys. 2018, 45, 3315–3320. [Google Scholar] [CrossRef]
- Spinelli, A.E.; Kuo, C.; Rice, B.W.; Calandrino, R.; Marzola, P.; Sbarbati, A.; Boschi, F. Multispectral Cerenkov luminescence tomography for small animal optical imaging. Opt. Express 2011, 19, 12605–12618. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, X.; Qu, X.; Yang, W.; Liang, J.; Wang, J.; Tian, J. Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach. PLoS ONE 2012, 7, e37623. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, X.; Song, T.; Bao, C.; Shi, L.; Hu, Z.; Wang, K.; Tian, J. Multispectral hybrid Cerenkov luminescence tomography based on the finite element SPn method. J. Biomed. Opt. 2015, 20, 86007. [Google Scholar] [CrossRef] [PubMed]
- Hongbo, G.; Xiaowei, H.; Muhan, L.; Zeyu, Z.; Zhenhua, H.; Jie, T. Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography. IEEE Trans. Med. Imaging 2017, 36, 1337–1346. [Google Scholar] [CrossRef]
- Robertson, R.; Germanos, M.S.; Li, C.; Mitchell, G.S.; Cherry, S.R.; Silva, M.D. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 2009, 54, N355–N365. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.E.; D’Ambrosio, D.; Calderan, L.; Marengo, M.; Sbarbati, A.; Boschi, F. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys. Med. Biol. 2010, 55, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.S.; Gill, R.K.; Cherry, S.R. Comments on ‘Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers’. Phys. Med. Biol. 2010, 55, L43–L44; author reply L45–L49. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, H.; Cheng, Z. Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J. Nucl. Med. 2011, 52, 2009–2018. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, A.; Holland, J.P.; Lewis, J.S.; Grimm, J. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med. 2010, 51, 1123–1130. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, A.E.; Ferdeghini, M.; Cavedon, C.; Zivelonghi, E.; Calandrino, R.; Fenzi, A.; Sbarbati, A.; Boschi, F. First human Cerenkography. J. Biomed. Opt. 2013, 18, 20502. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, R.; Gunn, J.R.; Esipova, T.V.; Vinogradov, S.; Gladstone, D.J.; Jarvis, L.A.; Pogue, B.W. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation. Phys. Med. Biol. 2016, 61, 3955–3968. [Google Scholar] [CrossRef] [Green Version]
- Glaser, A.K.; Zhang, R.; Davis, S.C.; Gladstone, D.J.; Pogue, B.W. Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms. Opt. Lett. 2012, 37, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Dothager, R.S.; Goiffon, R.J.; Jackson, E.; Harpstrite, S.; Piwnica-Worms, D. Cerenkov radiation energy transfer (CRET) imaging: A novel method for optical imaging of PET isotopes in biological systems. PLoS ONE 2010, 5, e13300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Dobrucki, L.W.; Marjanovic, M.; Chaney, E.J.; Suslick, K.S.; Boppart, S.A. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys. Med. Biol. 2015, 60, 727–739. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, X.; Xing, B.; Han, P.; Gambhir, S.S.; Cheng, Z. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 2010, 6, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Jiang, B.; Zheng, Z.; Liu, T. Semiconductor quantum dots in tumor research. J. Lumin. 2019, 209, 61–68. [Google Scholar] [CrossRef]
- Zhou, C.; Hao, G.; Thomas, P.; Liu, J.; Yu, M.; Sun, S.; Öz, P.K.; Sun, P.; Zheng, P. Near-Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angew. Chem. Int. Ed. 2012, 51, 10118–10122. [Google Scholar] [CrossRef]
- Volotskova, O.; Sun, C.; Stafford, J.H.; Koh, A.L.; Ma, X.; Cheng, Z.; Cui, B.; Pratx, G.; Xing, L. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging. Small 2015, 11, 4002–4008. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, Y.; Collin, B.; Decréau, R.A. Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in radionuclide. Chem. Commun. 2014, 50, 6711–6713. [Google Scholar] [CrossRef]
- Lioret, V.; Bellaye, P.S.; Arnould, C.; Collin, B.; Decreau, R.A. Dual Cherenkov Radiation-Induced Near-Infrared Luminescence Imaging and Photodynamic Therapy toward Tumor Resection. J. Med. Chem. 2020, 63, 9446–9456. [Google Scholar] [CrossRef]
- Cao, X.; Chen, X.; Kang, F.; Zhan, Y.; Cao, X.; Wang, J.; Liang, J.; Tian, J. Intensity Enhanced Cerenkov Luminescence Imaging Using Terbium-Doped Gd2O2S Microparticles. ACS Appl. Mater. Interfaces 2015, 7, 11775–11782. [Google Scholar] [CrossRef]
- Ma, X.; Kang, F.; Xu, F.; Feng, A.; Zhao, Y.; Lu, T.; Yang, W.; Wang, Z.; Lin, M.; Wang, J. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+),Yb(3+)-doped rare-earth microparticles. PLoS ONE 2013, 8, e77926. [Google Scholar] [CrossRef] [Green Version]
- Thorek, D.L.; Ogirala, A.; Beattie, B.J.; Grimm, J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med. 2013, 19, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; D’Souza, A.V.; Gunn, J.R.; Esipova, T.V.; Vinogradov, S.A.; Glaser, A.K.; Jarvis, L.A.; Gladstone, D.J.; Pogue, B.W. Cherenkov-excited luminescence scanned imaging. Opt. Lett. 2015, 40, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Qu, Y.; Wang, K.; Zhang, X.; Zha, J.; Song, T.; Bao, C.; Liu, H.; Wang, Z.; Wang, J.; et al. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat. Commun. 2015, 6, 7560. [Google Scholar] [CrossRef]
- Shimamoto, M.; Gotoh, K.; Hasegawa, K.; Kojima, A. Hybrid Light Imaging Using Cerenkov Luminescence and Liquid Scintillation for Preclinical Optical Imaging In Vivo. Mol. Imaging Biol. 2016, 18, 500–509. [Google Scholar] [CrossRef]
- Liu, H.; Carpenter, C.M.; Jiang, H.; Pratx, G.; Sun, C.; Buchin, M.P.; Gambhir, S.S.; Xing, L.; Cheng, Z. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: A feasibility experimental study. J. Nucl. Med. 2012, 53, 1579–1584. [Google Scholar] [CrossRef] [Green Version]
- Kothapalli, S.R.; Liu, H.; Liao, J.C.; Cheng, Z.; Gambhir, S.S. Endoscopic imaging of Cerenkov luminescence. Biomed. Opt. Express 2012, 3, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Zhan, Y.; Cao, X.; Liang, J.; Chen, X. Harnessing the Power of Cerenkov Luminescence Imaging for Gastroenterology: Cerenkov Luminescence Endoscopy. Curr. Med. Imaging 2017, 13, 50–57. [Google Scholar] [CrossRef]
- Cao, X.; Chen, X.; Kang, F.; Lin, Y.; Liu, M.; Hu, H.; Nie, Y.; Wu, K.; Wang, J.; Liang, J.; et al. Performance evaluation of endoscopic Cerenkov luminescence imaging system: In vitro and pseudotumor studies. Biomed. Opt. Express 2014, 5, 3660–3670. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, C.M.; Ma, X.; Liu, H.; Sun, C.; Pratx, G.; Wang, J.; Gambhir, S.S.; Xing, L.; Cheng, Z. Cerenkov luminescence endoscopy: Improved molecular sensitivity with β--emitting radiotracers. J. Nucl. Med. 2014, 55, 1905–1909. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Chen, X.; Cao, X.; Zhan, Y.; Liang, J. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd2O2S nanoparticles. Appl. Phys. Lett. 2015, 106, 213702. [Google Scholar] [CrossRef]
- Song, T.; Liu, X.; Qu, Y.; Liu, H.; Bao, C.; Leng, C.; Hu, Z.; Wang, K.; Tian, J. A Novel Endoscopic Cerenkov Luminescence Imaging System for Intraoperative Surgical Navigation. Mol. Imaging 2015, 14, 443–449. [Google Scholar] [CrossRef]
- Hu, H.; Cao, X.; Kang, F.; Wang, M.; Lin, Y.; Liu, M.; Li, S.; Yao, L.; Liang, J.; Liang, J.; et al. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: First human results. Eur. Radiol. 2015, 25, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Mitchell, G.S.; Cherry, S.R. Cerenkov luminescence tomography for small-animal imaging. Opt. Lett. 2010, 35, 1109–1111. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Liang, J.; Yang, W.; Fan, W.; Li, C.; Ma, X.; Chen, X.; Ma, X.; Li, X.; Qu, X.; et al. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt. Express 2010, 18, 24441–24450. [Google Scholar] [CrossRef]
- Zhong, J.; Tian, J.; Yang, X.; Qin, C. Whole-body Cerenkov luminescence tomography with the finite element SP(3) method. Ann. Biomed. Eng. 2011, 39, 1728–1735. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Liang, J.; Qu, X.; Chen, D.; Yang, W.; Wang, J.; Cao, F.; Tian, J. Single photon emission computed tomography-guided Cerenkov luminescence tomography. J. Appl. Phys. 2012, 112, 227. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, X.; Yu, J. Prior Compensation Algorithm for Cerenkov Luminescence Tomography From Single-View Measurements. Front. Oncol. 2021, 11, 749889. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, K.; An, Y.; Jiang, S.; Meng, H.; Tian, J. Nonmodel-based bioluminescence tomography using a machine-learning reconstruction strategy. Optica 2018, 5, 1451–1454. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, M.; Gao, Y.; Shi, X.; Zhang, X.; Hu, Z.; Tian, J. A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network. Phys. Med. Biol. 2019, 64, 245010. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, Z.; Shi, X.; Yang, J.; Tian, J. Non-negative Iterative Convex Refinement Approach for Accurate and Robust Reconstruction in Cerenkov Luminescence Tomography. IEEE Trans. Med. Imaging 2020, 39, 3207–3217. [Google Scholar] [CrossRef]
- Thorek, D.; Robertson, R.; Bacchus, W.A.; Hahn, J.; Rothberg, J.; Beattie, B.J.; Grimm, J. Cerenkov imaging—A new modality for molecular imaging. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 163–173. [Google Scholar] [PubMed]
- Tanha, K.; Pashazadeh, A.M.; Pogue, B.W. Review of biomedical Cerenkov luminescence imaging applications. Biomed. Opt. Express 2015, 6, 3053–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, D.Y.; Mair, R.; Wright, A.; Allinson, K.; Lyons, S.K.; Booth, T.; Jones, J.; Bielik, R.; Soloviev, D.; Brindle, K.M. [(18)F]fluoroethyltyrosine-induced Cerenkov Luminescence Improves Image-Guided Surgical Resection of Glioma. Theranostics 2018, 8, 3991–4002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qu, Y.; Cao, Y.; Shi, X.; Guo, H.; Zhang, X.; Zheng, S.; Liu, H.; Hu, Z.; Tian, J. A novel in vivo Cerenkov luminescence image-guided surgery on primary and metastatic colorectal cancer. J. Biophotonics 2020, 13, e201960152. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.E.; Schiariti, M.P.; Grana, C.M.; Ferrari, M.; Cremonesi, M.; Boschi, F. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery. J. Biomed. Opt. 2016, 21, 50502. [Google Scholar] [CrossRef]
- Holland, J.P.; Normand, G.; Ruggiero, A.; Lewis, J.S.; Grimm, J. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol. Imaging 2011, 10, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Thorek, D.L.; Abou, D.S.; Beattie, B.J.; Bartlett, R.M.; Huang, R.; Zanzonico, P.B.; Grimm, J. Positron lymphography: Multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG. J. Nucl. Med. 2012, 53, 1438–1445. [Google Scholar] [CrossRef] [Green Version]
- Grootendorst, M.R.; Cariati, M.; Pinder, S.E.; Kothari, A.; Douek, M.; Kovacs, T.; Hamed, H.; Pawa, A.; Nimmo, F.; Owen, J.; et al. Intraoperative Assessment of Tumor Resection Margins in Breast-Conserving Surgery Using (18)F-FDG Cerenkov Luminescence Imaging: A First-in-Human Feasibility Study. J. Nucl. Med. 2017, 58, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.A.; Keane, F.K.; Voncken, F.E.M.; Thomas, C.R., Jr. Contemporary radiotherapy: Present and future. Lancet 2021, 398, 171–184. [Google Scholar] [CrossRef]
- Jarvis, L.A.; Zhang, R.; Gladstone, D.J.; Jiang, S.; Hitchcock, W.; Friedman, O.D.; Glaser, A.K.; Jermyn, M.; Pogue, B.W. Cherenkov video imaging allows for the first visualization of radiation therapy in real time. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 615–622. [Google Scholar] [CrossRef]
- Alexander, D.A.; Tendler, I.I.; Bruza, P.; Cao, X.; Schaner, P.E.; Marshall, B.S.; Jarvis, L.A.; Gladstone, D.J.; Pogue, B.W. Assessment of imaging Cherenkov and scintillation signals in head and neck radiotherapy. Phys. Med. Biol. 2019, 64, 145021. [Google Scholar] [CrossRef] [PubMed]
- Glaser, A.K.; Zhang, R.; Andreozzi, J.M.; Gladstone, D.J.; Pogue, B.W. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications. Phys. Med. Biol. 2015, 60, 6701–6718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, M.R.; Rahman, M.; Zhang, R.; Cao, X.; Williams, B.B.; Hoopes, P.J.; Gladstone, D.J.; Pogue, B.W.; Bruza, P. Technical Note: Single-pulse beam characterization for FLASH-RT using optical imaging in a water tank. Med. Phys. 2021, 48, 2673–2681. [Google Scholar] [CrossRef] [PubMed]
- Van de Ven, S.M.; Elias, S.G.; van den Bosch, M.A.; Luijten, P.; Mali, W.P. Optical imaging of the breast. Cancer Imaging 2008, 8, 206–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogue, B.W.; Leblond, F.; Krishnaswamy, V.; Paulsen, K.D. Radiologic and near-infrared/optical spectroscopic imaging: Where is the synergy? AJR Am. J. Roentgenol. 2010, 195, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreozzi, J.M.; Zhang, R.; Gladstone, D.J.; Williams, B.B.; Glaser, A.K.; Pogue, B.W.; Jarvis, L.A. Cherenkov imaging method for rapid optimization of clinical treatment geometry in total skin electron beam therapy. Med. Phys. 2016, 43, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.A.; Nomezine, A.; Jarvis, L.A.; Gladstone, D.J.; Pogue, B.W.; Bruza, P. Color Cherenkov imaging of clinical radiation therapy. Light Sci. Appl. 2021, 10, 226. [Google Scholar] [CrossRef]
- Ni, D.; Ferreira, C.A.; Barnhart, T.E.; Quach, V.; Yu, B.; Jiang, D.; Wei, W.; Liu, H.; Engle, J.W.; Hu, P.; et al. Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy. J. Am. Chem. Soc. 2018, 140, 14971–14979. [Google Scholar] [CrossRef]
- Yu, G.; Yu, S.; Saha, M.L.; Zhou, J.; Cook, T.R.; Yung, B.C.; Chen, J.; Mao, Z.; Zhang, F.; Zhou, Z.; et al. A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nat. Commun. 2018, 9, 4335. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Hopper, C. Photodynamic therapy: A clinical reality in the treatment of cancer. Lancet Oncol. 2000, 1, 212–219. [Google Scholar] [CrossRef]
- Juzeniene, A.; Nielsen, K.P.; Moan, J. Biophysical aspects of photodynamic therapy. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 7–28. [Google Scholar] [CrossRef] [PubMed]
- Cincotta, L.; Szeto, D.; Lampros, E.; Hasan, T.; Cincotta, A.H. Benzophenothiazine and Benzoporphyrin Derivative Combination Phototherapy Effectively Eradicates Large Murine Sarcomas. Photochem. Photobiol. 1996, 63, 229–237. [Google Scholar] [CrossRef]
- Kotagiri, N.; Sudlow, G.P.; Akers, W.J.; Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 2015, 10, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Cline, B.; Delahunty, I.; Xie, J. Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1541. [Google Scholar] [CrossRef]
- Kotagiri, N.; Laforest, R.; Achilefu, S. Reply to ‘Is Cherenkov luminescence bright enough for photodynamic therapy?’. Nat. Nanotechnol. 2018, 13, 354–355. [Google Scholar] [CrossRef]
- Pratx, G.; Kapp, D.S. Is Cherenkov luminescence bright enough for photodynamic therapy? Nat. Nanotechnol. 2018, 13, 354. [Google Scholar] [CrossRef]
- Packer, S. Tumor detection with radiopharmaceuticals. Semin. Nucl. Med. 1984, 14, 21–30. [Google Scholar] [CrossRef]
- Yoon, S.W.; Tsvankin, V.; Shrock, Z.; Meng, B.; Zhang, X.; Dewhirst, M.; Fecci, P.; Adamson, J.; Oldham, M. Enhancing Radiation Therapy Through Cherenkov Light-Activated Phototherapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Luo, L.; Feng, Y.; Cai, Y.; Zhuang, Y.; Xie, R.J.; Chen, X.; Chen, H. Aggregation-Induced Emission Gold Clustoluminogens for Enhanced Low-Dose X-ray-Induced Photodynamic Therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 9914–9921. [Google Scholar] [CrossRef] [PubMed]
- Boschi, F.; Spinelli, A.E. Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy. Nanomaterials 2020, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Hompland, T.; Fjeldbo, C.S.; Lyng, H. Tumor Hypoxia as a Barrier in Cancer Therapy: Why Levels Matter. Cancers 2021, 13, 499. [Google Scholar] [CrossRef] [PubMed]
- Bettegowda, C.; Dang, L.H.; Abrams, R.; Huso, D.L.; Dillehay, L.; Cheong, I.; Agrawal, N.; Borzillary, S.; McCaffery, J.M.; Watson, E.L.; et al. Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria. Proc. Natl. Acad. Sci. USA 2003, 100, 15083–15088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendran, J.G.; Hendrickson, K.R.; Spence, A.M.; Muzi, M.; Krohn, K.A.; Mankoff, D.A. Hypoxia imaging-directed radiation treatment planning. Eur. J. Nucl. Med. Mol. Imaging 2006, 33 (Suppl. S1), 44–53. [Google Scholar] [CrossRef]
- Rickard, A.G.; Palmer, G.M.; Dewhirst, M.W. Clinical and Pre-clinical Methods for Quantifying Tumor Hypoxia. Adv. Exp. Med. Biol. 2019, 1136, 19–41. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.M.; Hegi-Johnson, F. Radiotherapy toxicity. Nat. Rev. Dis. Primers 2019, 5, 13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, L.; Li, J.; Wang, P.; Lang, J.; Yang, Y. Cherenkov Luminescence in Tumor Diagnosis and Treatment: A Review. Photonics 2022, 9, 390. https://doi.org/10.3390/photonics9060390
Wang X, Li L, Li J, Wang P, Lang J, Yang Y. Cherenkov Luminescence in Tumor Diagnosis and Treatment: A Review. Photonics. 2022; 9(6):390. https://doi.org/10.3390/photonics9060390
Chicago/Turabian StyleWang, Xianliang, Lintao Li, Jie Li, Pei Wang, Jinyi Lang, and Yuanjie Yang. 2022. "Cherenkov Luminescence in Tumor Diagnosis and Treatment: A Review" Photonics 9, no. 6: 390. https://doi.org/10.3390/photonics9060390
APA StyleWang, X., Li, L., Li, J., Wang, P., Lang, J., & Yang, Y. (2022). Cherenkov Luminescence in Tumor Diagnosis and Treatment: A Review. Photonics, 9(6), 390. https://doi.org/10.3390/photonics9060390