Enhanced Absorption in InP Nanodisk Arrays on Ultra-Thin-Film Silicon for Solar Cell Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. InP/Si Heterojunction
2.2. Simulation
2.3. Multipolar Decomposition
3. Results
3.1. Optimizing InP Structures on Si for Antireflection
3.2. Multipole Decomposition of the Optimized Structures
3.3. Thin-Film Effect
3.4. Absorption Enhancement in Thin-Film Si Solar Cells by Nanodisk Arrays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley Science Series; Wiley: New York, NY, USA, 1983. [Google Scholar] [CrossRef] [Green Version]
- National Renewable Energy Laboratory, U.S. Department of Energy. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 2 July 2020).
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A.W. Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Dross, F.; Baert, K.; Bearda, T.; Deckers, J.; Depauw, V.; El Daif, O.; Gordon, I.; Gougam, A.; Govaerts, J.; Granata, S.; et al. Crystalline thin-foil silicon solar cells: Where crystalline quality meets thin-film processing. Prog. Photovolt. Res. Appl. 2012, 20, 770–784. [Google Scholar] [CrossRef]
- Meillaud, F.; Boccard, M.; Bugnon, G.; Despeisse, M.; Hänni, S.; Haug, F.J.; Persoz, J.; Schüttauf, J.W.; Stuckelberger, M.; Ballif, C. Recent advances and remaining challenges in thin-film silicon photovoltaic technology. Mater. Today 2015, 18, 378–384. [Google Scholar] [CrossRef]
- Wang, A.; Zhao, J.; Wenham, S.R.; Green, M.A. 21.5% Efficient thin silicon solar cell. Prog. Photovolt. Res. Appl. 1996, 4, 55–58. [Google Scholar] [CrossRef]
- Jeong, S.; McGehee, M.D.; Cui, Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 2013, 4, 2950. [Google Scholar] [CrossRef] [Green Version]
- Hänni, S.; Bugnon, G.; Parascandolo, G.; Boccard, M.; Escarré, J.; Despeisse, M.; Meillaud, F.; Ballif, C. High-efficiency microcrystalline silicon single-junction solar cells. Prog. Photovolt. Res. Appl. 2013, 21, 821–826. [Google Scholar] [CrossRef]
- Depauw, V.; Trompoukis, C.; Massiot, I.; Chen, W.; Dmitriev, A.; Cabarrocas, P.R.i.; Gordon, I.; Poortmans, J. Sunlight-thin nanophotonic monocrystalline silicon solar cells. Nano Futures 2017, 1, 021001. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, I.; Yi, J. Silicon nitride films prepared by high-density plasma chemical vapor deposition for solar cell applications. Surf. Coat. Technol. 2022, 153, 67–71. [Google Scholar] [CrossRef]
- Zhao, J.; Green, M. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron Devices 1991, 38, 1925–1934. [Google Scholar] [CrossRef]
- Macdonald, D.H.; Cuevas, A.; Kerr, M.J.; Samundsett, C.; Ruby, D.; Winderbaum, S.; Leo, A. Texturing industrial multicrystalline silicon solar cells. Sol. Energy 2004, 76, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Winderbaum, S.; Reinhold, O.; Yun, F. Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 1997, 46, 239–248. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Baryshnikova, K.V.; Petrov, M.I.; Babicheva, V.E.; Belov, P.A. Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci. Rep. 2016, 6, 22136. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Cao, G.; Yang, H.; Zhou, X.; Wu, Y. Dynamic Control of Double Plasmon-Induced Transparencies in Aperture-Coupled Waveguide-Cavity System. Plasmonics 2018, 13, 345–352. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef]
- van Lare, C.; Lenzmann, F.; Verschuuren, M.A.; Polman, A. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells. Nano Lett. 2015, 15, 4846–4852. [Google Scholar] [CrossRef]
- Daqiqeh Rezaei, S.; Dong, Z.; You En Chan, J.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.W.; Mortensen, N.A.; Yang, J.K. Nanophotonic Structural Colors. ACS Photonics 2021, 8, 18–33. [Google Scholar] [CrossRef]
- Yang, W.; Xiao, S.; Song, Q.; Liu, Y.; Wu, Y.; Wang, S.; Yu, J.; Han, J.; Tsai, D.P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Qi, L. Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horizons 2014, 2, 37–53. [Google Scholar] [CrossRef]
- Peter Amalathas, A.; Alkaisi, M.M. Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines 2019, 10, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adibzadeh, F.; Olyaee, S. Plasmonic Enhanced InP Nanowire Array Solar Cell through Optoelectronic Modeling. Photonics 2021, 8, 90. [Google Scholar] [CrossRef]
- Raj, V.; Rougieux, F.; Fu, L.; Tan, H.H.; Jagadish, C. Design of Ultrathin InP Solar Cell Using Carrier Selective Contacts. IEEE J. Photovolt. 2020, 10, 1657–1666. [Google Scholar] [CrossRef]
- Yin, X.; Battaglia, C.; Lin, Y.; Chen, K.; Hettick, M.; Zheng, M.; Chen, C.Y.; Kiriya, D.; Javey, A. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact. ACS Photonics 2014, 1, 1245–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, M.; Yamamoto, A.; Uchida, N.; Uemura, C. A new approach for thin film InP solar cells. Sol. Cells 1986, 19, 85–96. [Google Scholar] [CrossRef]
- Kroemer, H.; Liu, T.Y.; Petroff, P.M. GaAs on Si and related systems: Problems and prospects. J. Cryst. Growth 1989, 95, 96–102. [Google Scholar] [CrossRef]
- Sugo, M.; Takanashi, Y.; Al-jassim, M.M.; Yamaguchi, M. Heteroepitaxial growth and characterization of InP on Si substrates. J. Appl. Phys. 1990, 68, 540–547. [Google Scholar] [CrossRef]
- Shimizu, Y.; Okada, Y. Growth of high-quality GaAs/Si films for use in solar cell applications. J. Cryst. Growth 2004, 265, 99–106. [Google Scholar] [CrossRef]
- Lourdudoss, S. Heteroepitaxy and selective area heteroepitaxy for silicon photonics. Curr. Opin. Solid State Mater. Sci. 2012, 16, 91–99. [Google Scholar] [CrossRef]
- Tanabe, K.; Watanabe, K.; Arakawa, Y. III-V/Si hybrid photonic devices by direct fusion bonding. Sci. Rep. 2012, 2, 349. [Google Scholar] [CrossRef]
- Roelkens, G.; Liu, L.; Liang, D.; Jones, R.; Fang, A.; Koch, B.; Bowers, J. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev. 2010, 4, 751–779. [Google Scholar] [CrossRef]
- Pantzas, K.; Itawi, A.; Sagnes, I.; Patriarche, G.; Le Bourhis, E.; Lupu, A.; Benisty, H.; Talneau, A. Oxide-Free Bonding of III-V-Based Material on Silicon and Nano-Structuration of the Hybrid Waveguide for Advanced Optical Functions. Photonics 2015, 2, 1054–1064. [Google Scholar] [CrossRef] [Green Version]
- Pasquariello, D.; Camacho, M.; Hjort, K.; Dózsa, L.; Szentpáli, B. Evaluation of InP-to-silicon heterobonding. Mater. Sci. Eng. B 2001, 80, 134–137. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Hoffman, C.A.; Gerritsen, H.J.; Nurmikko, A.V. Study of surface recombination in GaAs and InP by picosecond optical techniques. J. Appl. Phys. 1980, 51, 1603–1604. [Google Scholar] [CrossRef]
- Nolte, D.D. Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs. Solid-State Electron. 1990, 33, 295–298. [Google Scholar] [CrossRef]
- Naureen, S.; Shahid, N.; Dev, A.; Anand, S. Generation of substrate-free III–V nanodisks from user-defined multilayer nanopillar arrays for integration on Si. Nanotechnology 2013, 24, 225301. [Google Scholar] [CrossRef] [Green Version]
- Lumerical FDTD Solutions. Available online: https://www.lumerical.com/ (accessed on 13 September 2020).
- Sze, S.M.; Ng, K.K. p-n Junctions. In Physics of Semiconductor Devices; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 124–129. [Google Scholar] [CrossRef]
- Alaee, R.; Rockstuhl, C.; Fernandez-Corbaton, I. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun. 2018, 407, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett. 2015, 40, 2645–2648. [Google Scholar] [CrossRef]
- Pors, A.; Andersen, S.K.H.; Bozhevolnyi, S.I. Unidirectional scattering by nanoparticles near substrates: Generalized Kerker conditions. Opt. Express 2015, 23, 28808–28828. [Google Scholar] [CrossRef] [Green Version]
- Naureen, S.; Sanatinia, R.; Shahid, N.; Anand, S. High Optical Quality InP-Based Nanopillars Fabricated by a Top-Down Approach. Nano Lett. 2011, 11, 4805–4811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cvetanovic, S.; Pearce, J.M. Fabricating ordered 2-D nano-structured arrays using nanosphere lithography. MethodsX 2017, 4, 229–242. [Google Scholar] [CrossRef] [PubMed]
Absorption Depth [nm] | Plain Si | InP Thin Film/Si | Si Nanodisks/Si | Optimized InP Nanodisks/Si |
---|---|---|---|---|
0 | 0% | 30.5% | 8.3% | 30.8% |
500 | 18.2% | 36.9% | 33.5% | 47.5% |
1000 | 25.9% | 40.2% | 44.7% | 55.0% |
2000 | 34.6% | 44.7% | 56.7% | 63.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjellberg, M.; Ravishankar, A.P.; Anand, S. Enhanced Absorption in InP Nanodisk Arrays on Ultra-Thin-Film Silicon for Solar Cell Applications. Photonics 2022, 9, 157. https://doi.org/10.3390/photonics9030157
Kjellberg M, Ravishankar AP, Anand S. Enhanced Absorption in InP Nanodisk Arrays on Ultra-Thin-Film Silicon for Solar Cell Applications. Photonics. 2022; 9(3):157. https://doi.org/10.3390/photonics9030157
Chicago/Turabian StyleKjellberg, Mikko, Ajith Padyana Ravishankar, and Srinivasan Anand. 2022. "Enhanced Absorption in InP Nanodisk Arrays on Ultra-Thin-Film Silicon for Solar Cell Applications" Photonics 9, no. 3: 157. https://doi.org/10.3390/photonics9030157
APA StyleKjellberg, M., Ravishankar, A. P., & Anand, S. (2022). Enhanced Absorption in InP Nanodisk Arrays on Ultra-Thin-Film Silicon for Solar Cell Applications. Photonics, 9(3), 157. https://doi.org/10.3390/photonics9030157