Broadband Generation of Polarization-Immune Cloaking via a Hybrid Phase-Change Metasurface
Abstract
:1. Introduction
2. Principles and Structures
2.1. Design Principles of Polarization-Insensitive Cloaking
2.2. Structures and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurig, D.; Mock, J.J.; Justice, B.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical cloaking with metamaterials. Nat. Photon. 2007, 1, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ji, C.; Mock, J.; Chin, J.; Cui, T.; Smith, D. Broadband ground-plane cloak. Science 2009, 323, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.; Smith, D.R. A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 2013, 12, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Alù, A.; Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 2005, 72, 016623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, B.; Alù, A.; Silveirinha, M.G.; Engheta, N. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett. 2009, 103, 153901. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Pendry, J.B. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 2008, 101, 203901. [Google Scholar] [CrossRef] [Green Version]
- Valentine, J.; Li, J.; Zentgraf, T.; Bartal, G.; Zhang, X. An optical cloak made of dielectrics. Nat. Mater. 2009, 8, 568–571. [Google Scholar] [CrossRef] [Green Version]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar photonics with metasurfaces. Science 2013, 339, 1232009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic meta-atoms and metasurfaces. Nat. Photon. 2014, 8, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic spin Hall effect at metasurfaces. Science 2013, 339, 1405–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhang, X.; Kenney, M.; Su, X.; Xu, N.; Ouyang, C.; Shi, Y.; Han, J.; Zhang, W.; Zhang, S. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 2014, 26, 5031–5036. [Google Scholar] [CrossRef]
- Cui, T.; Bai, B.; Sun, H.B. Tunable metasurfaces based on active materials. Adv. Func. Mater. 2019, 29, 1806692. [Google Scholar] [CrossRef]
- Orazbayev, B.; Estakhri, N.M.; Beruete, M.; Alù, A. Terahertz carpet cloak based on a ring resonator metasurface. Phys. Rev. B 2015, 91, 195444. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Wong, Z.J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jing, L.; Zheng, B.; Hao, R.; Yin, W.; Li, E.; Soukoulis, C.M.; Chen, H. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater. 2016, 28, 6866–6871. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yang, J.; Wu, X.; Song, J.; Pu, M.; Wang, C.; Luo, X. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics 2017, 5, 1718–1725. [Google Scholar] [CrossRef]
- Xu, H.-X.; Hu, G.; Wang, Y.; Wang, C.; Wang, M.; Wang, S.; Huang, Y.; Genevet, P.; Huang, W.; Qiu, C.-W. Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci. Appl. 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Li, Q.; Liu, B.; Luo, J.; Sun, S.; Hang, Z.H.; Zhou, L.; Lai, Y. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl. 2018, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Alu, A. Mantle cloaking using thin patterned metasurfaces. Phys. Rev. B 2011, 84, 205110. [Google Scholar] [CrossRef]
- Yang, J.; Huang, C.; Wu, X.; Sun, B.; Luo, X. Dual-wavelength carpet cloak using ultrathin metasurface. Adv. Opt. Mater. 2018, 6, 1800073. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Liu, Q.; Liang, D.; Zheng, B.; Chen, H.; Xu, Z.; Wang, H. Multi-frequency metasurface carpet cloaks. Opt. Express 2018, 26, 14123–14131. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, J.; Xu, K.; Qian, Y.; Ma, X.; Yang, P.; Duan, X.; Ding, P.; Li, Z.-Y. Phase-change reconfigurable metasurface for broadband, wide-angle, continuously tunable and switchable cloaking. Opt. Express 2021, 29, 5959–5971. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xu, J.; Xu, K.; Ding, P.; Li, Z.-Y. Ge2Sb2Te5-based reconfigurable metasurface for polarization-insensitive, full-azimuth, and switchable cloaking. Appl. Opt. 2021, 60, 8088–8096. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photon. 2020, 14, 383–390. [Google Scholar] [CrossRef]
- Vellucci, S.; Monti, A.; Barbuto, M.; Toscano, A.; Bilotti, F. Waveform-selective mantle cloaks for intelligent antennas. IEEE Trans. Antennas Propag. 2019, 68, 1717–1725. [Google Scholar] [CrossRef]
- Zhang, X.G.; Sun, Y.L.; Yu, Q.; Cheng, Q.; Jiang, W.X.; Qiu, C.W.; Cui, T.J. Smart Doppler Cloak Operating in Broad Band and Full Polarizations. Adv. Mater. 2021, 33, 2007966. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liang, Q.; Li, Z.; Lv, P.; Chen, T.; Li, D. Experimental demonstration of a 3D-printed arched metasurface carpet cloak. Adv. Opt. Mater. 2019, 7, 1900475. [Google Scholar] [CrossRef]
- Xu, J.; Tian, X.; Ding, P.; Xu, K.; Li, Z.-Y. Ge2Sb2Se4Te1-based multifunctional metalenses for polarization-independent, switchable and dual-mode focusing in the mid-infrared region. Opt. Express 2021, 29, 44227–44238. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Bharwani, Z.; Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 2019, 10, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.-Y.; Hong, J.-Y.; Hwang, S.; Moon, S.; Kang, H.; Jeon, S.; Kim, H.; Jeong, J.-H.; Lee, B. Metasurface eyepiece for augmented reality. Nat. Commun. 2018, 9, 4562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poincaré, H. Theorie Mathematique de la Lumiere; Gauthiers-Villars: Paris, France, 1892. [Google Scholar]
- Zhang, Y.; Chou, J.B.; Li, J.; Li, H.; Du, Q.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.; Zhong, H. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Steinle, T.; Huang, L.; Taubner, T.; Wuttig, M.; Zentgraf, T.; Giessen, H. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 2017, 6, e17016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Pu, M.; Zhang, F.; Guo, Y.; He, Q.; Ma, X.; Huang, Y.; Li, X.; Yu, H.; Luo, X. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials. Adv. Sci. 2018, 5, 1800835. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Pu, M.; Zhao, Z.; Ma, X.; Wang, Y.; Luo, X. Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 2016, 6, 19885. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Liang, Q.; Li, Z.; Chen, T.; Li, D.; Hao, Y. A 3D Carpet Cloak with Non-Euclidean Metasurfaces. Adv. Opt. Mater. 2020, 8, 2000827. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; An, S.; Zhang, Y.; Yang, F.; Su, P.; Liberman, V.; Chou, J.B.; Roberts, C.M.; Kang, M.; Rios, C. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 2021, 12, 1225. [Google Scholar] [CrossRef]
- Tian, X.; Xu, J.; Xu, K.; Ma, X.; Duan, X.; Yang, P.; Ding, P.; Li, Z.-Y. Wavelength-selective, tunable and switchable plasmonic perfect absorbers based on phase change materials Ge2Sb2Te5. EPL Europhys. Lett. 2020, 128, 67001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Xu, J.; Xiao, T.-H.; Ding, P.; Xu, K.; Du, Y.; Li, Z.-Y. Broadband Generation of Polarization-Immune Cloaking via a Hybrid Phase-Change Metasurface. Photonics 2022, 9, 156. https://doi.org/10.3390/photonics9030156
Tian X, Xu J, Xiao T-H, Ding P, Xu K, Du Y, Li Z-Y. Broadband Generation of Polarization-Immune Cloaking via a Hybrid Phase-Change Metasurface. Photonics. 2022; 9(3):156. https://doi.org/10.3390/photonics9030156
Chicago/Turabian StyleTian, Ximin, Junwei Xu, Ting-Hui Xiao, Pei Ding, Kun Xu, Yinxiao Du, and Zhi-Yuan Li. 2022. "Broadband Generation of Polarization-Immune Cloaking via a Hybrid Phase-Change Metasurface" Photonics 9, no. 3: 156. https://doi.org/10.3390/photonics9030156
APA StyleTian, X., Xu, J., Xiao, T. -H., Ding, P., Xu, K., Du, Y., & Li, Z. -Y. (2022). Broadband Generation of Polarization-Immune Cloaking via a Hybrid Phase-Change Metasurface. Photonics, 9(3), 156. https://doi.org/10.3390/photonics9030156