Modulation of Surface Plasmonic Bending Beam via Nanoslit Interactions
Abstract
:1. Introduction
2. Theoretical Analysis and Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brongersma, M.L.; Shalaev, M.V. The case for plasmonics. Science 2010, 328, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Walters, R.J.; Loon, R.V.A.V.; Brunets, I.; Schmitz, J.; Polman, A. A silicon-based electrical source of surface plasmon polaritons. Nat. Mater. 2010, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Stief, F.; Yu, M. Subwavelength optical trapping with a fiber-based surface plasmonic lens. Opt. Lett. 2013, 38, 721. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; He, Q.; Hao, J.; Xiao, S.; Zhou, L. Electromagnetic metasurfaces: Physics and applications. Adv. Opt. Photonics 2019, 11, 380. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ren, T.; Zhao, Y.; Yu, Q.; Huang, Z.; Zhang, K.; Chen, S. Polarization-Independent Wavefront Manipulation of Surface Plasmons with Plasmonic Metasurfaces. Adv. Opt. Mater. 2020, 8, 2000868. [Google Scholar] [CrossRef]
- Juan, M.L.; Righini, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349. [Google Scholar] [CrossRef]
- Min, C.; Shen, Z.; Shen, J.; Zhang, Y.; Fang, H.; Yuan, G.H.; Yuan, X.C. Focused plasmonic trapping of metallic particles. Nat. Commun. 2013, 4, 2891. [Google Scholar] [CrossRef]
- Ke, X.Z.; Qin, H.H.; Yang, S.J.; Wu, J.; Pan, X. Night background light noise model of visible light communication system in vehicle networking environment. Chin. J. Radio Sci. 2021, 36, 986–990. (In Chinese) [Google Scholar] [CrossRef]
- Ke, X.Z.; Wu, J.L.; Yang, S.J. Research progress and prospect of atmospheric turbulence for wireless optical communication. Chin. J. Radio Sci. 2021, 36, 323–339. (In Chinese) [Google Scholar] [CrossRef]
- Kaminer, I.; Bekenstein, R.; Nemirovsky, J.; Segev, M. Nondiffracting accelerating wave packets of Maxwell’s equations. Phys. Rev. Lett. 2012, 108, 163901. [Google Scholar] [CrossRef]
- Aleahmad, P.; Miri, M.A.; Mills, M.S.; Kaminer, I.; Segev, M.; Christodoulides, D.N. Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams. Phys. Rev. Lett. 2012, 109, 203902. [Google Scholar] [CrossRef] [PubMed]
- Dolev, I.; Epstein, I.; Arie, A. Surface-Plasmon Holographic Beam Shaping. Phys. Rev. Lett. 2012, 109, 203903. [Google Scholar] [CrossRef] [PubMed]
- Epstein, I.; Arie, A. Arbitrary Bending Plasmonic Light Waves. Phys. Rev. Lett. 2014, 112, 023903. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Cheng, H.; Tian, J.; Chen, S. Diffractive metalens: From fundamentals, practical applications to current trends. Adv. Phys. X 2020, 5, 1742584. [Google Scholar] [CrossRef] [Green Version]
- Baumgartl, J.; Mazilu, M.; Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nat. Photonics 2008, 2, 675. [Google Scholar] [CrossRef]
- Zhu, X.; Schülzgen, A.; Wei, H.; Kieu, K.; Peyghambarian, N. White light Bessel-like beams generated by miniature all-fiber device. Opt. Express 2011, 19, 11365–11374. [Google Scholar] [CrossRef]
- Libster-Hershko, A.; Epstein, I.; Arie, A. Rapidly Accelerating Mathieu and Weber Surface Plasmon Beams. Phys. Rev. Lett. 2014, 113, 123902. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, Y.; Li, T.; Cannan, D.; Yin, X.; Morandotti, R.; Zhang, X. Nonparaxial Mathieu and Weber accelerating beams. Phys. Rev. Lett. 2012, 109, 193901. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Dellinger, J.; Genevet, P.; Cluzel, B.; Fornel, F.D.; Capasso, F. Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave. Phys. Rev. Lett. 2012, 109, 093904. [Google Scholar] [CrossRef]
- Huidobro, P.A.; Kraft, M.; Maier, S.A.; Pendry, J.B. Graphene as a Tunable Anisotropic or Isotropic Plasmonic Metasurface. ACS Nano 2016, 10, 5499–5506. [Google Scholar] [CrossRef]
- Epstein, I.; Lilach, Y.; Arie, A. Shaping plasmonic light beams with near-field plasmonic holograms. J. Opt. Soc. Am. B 2014, 31, 1642–1647. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Wang, S.M.; Zhu, S.N. Plasmonic Airy Beam Generated by In-Plane Diffraction. Phys. Rev. Lett. 2011, 107, 126804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Zhang, M.; Gan, L.; Wu, X.; Sun, L.; Liu, J.; Li, Z.Y. Holographic plasmonic lenses for surface plasmons with complex wavefront profile. Opt. Express 2013, 21, 17558–17566. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, X.; Li, T.; Zhu, S. On-Chip Detection of Orbital Angular Momentum Beam by Plasmonic Nanogratings. Laser Photo. Rev. 2018, 12, 1700331. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Guo, H.; Sun, W.; Xiao, S.; Zhou, L. A Tunable Metasurface with Switchable Functionalities: From Perfect Transparency to Perfect Absorption. Adv. Opt. Mater. 2020, 8, 1901548. [Google Scholar] [CrossRef]
- Abouelatta, M.A.; Obayya, S.S.; Hameed, M.F.O. Highly efficient transmissive metasurface for polarization control. Opt. Quantum Electron. 2021, 53, 87. [Google Scholar] [CrossRef]
- Feng, F.; Si, G.; Min, C.; Yuan, X.; Somekh, M. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl. 2020, 9, 95. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, J.; Ma, L.; Shen, Z.; Zhang, J.; Zheng, X.; Zhou, L. A chromatic terahertz Airy beam generation with dielectric metasurfaces. Nanophotonics 2021, 10, 1123–1131. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Yan, S.; Xu, X.; Wang, S.; Yao, B.; Zhu, S. Generation and Conversion Dynamics of Dual Bessel Beams with a Photonic Spin-Dependent Dielectric Metasurface. Phys. Rev. Appl. 2021, 15, 014059. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J. Metasurface-Empowered Optical Multiplexing and Multifunction. Adv. Mater. 2020, 32, 1805912. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Cheng, H.; Liu, W.; Tang, C.; Tian, J. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics 2017, 4, 2061. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Z.; Chen, S.; Tian, J. Emergent Functionality and Controllability in Few-Layer Metasurfaces. Adv. Mater. 2015, 27, 5410–5421. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, H.; Zhong, Y.; Yu, J.; Chen, Z. Wave-Vector-Varying Pancharatnam-Berry Phase Photonic Spin Hall Effect. Phys. Rev. Lett. 2021, 126, 083901. [Google Scholar] [CrossRef]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Chen, H.T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304. [Google Scholar] [CrossRef] [Green Version]
- Melentiev, P.N.; Kalmykov, A.; Kuzin, A.; Negrov, D.; Balykin, V.I. Open-Type SPP Waveguide with Ultrahigh Bandwidth up to 3.5 THz. ACS Photonics 2019, 6, 6. [Google Scholar] [CrossRef]
- Melentiev, P.N.; Kuzin, A.A.; Negrov, D.V.; Balykin, V.I. Diffraction-Limited Focusing of Plasmonic Wave by a Parabolic Mirror. Plasmonics 2018, 13, 2361–2367. [Google Scholar] [CrossRef]
- Melentiev, P.N.; Balykin, V.I. Nano-optical elements for surface plasmon waves: (50th anniversary of the Institute of Spectroscopy, Russian Academy of Sciences). Phys.-Usp. 2019, 62, 267–274. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.Q.; Zhang, X.Q.; Zhou, L.; Sun, S.L. Excite Spoof Surface Plasmons with Tailored Wavefronts Using High-Efficiency Terahertz Metasurfaces. Adv. Sci. 2020, 7, 2000982. [Google Scholar] [CrossRef]
- Gao, Y.J.; Xiong, X.; Wang, Z.H.; Chen, F.; Wang, M. Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation. Phys. Rev. X 2020, 10, 3. [Google Scholar] [CrossRef]
- Li, H.; Hao, W.; Chen, S.; Chen, L. Broadband Generation of Airy Beams with Hyperbolic Metamaterials. Adv. Opt. Mater. 2019, 7, 20. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Yang, H.; Jin, G. Manipulating surface plasmon polaritons with M-shaped nanoslit array via polarized incident waves. EPL 2019, 127, 25001. [Google Scholar] [CrossRef]
- Epstein, I.; Remez, R.; Tsur, Y.; Arie, A. Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media. Optica 2016, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Cao, G.; Ou, K.; Li, G.; Chen, X. Broadband Spin-Driven Anomalous Surface Plasmon Polariton Steering via V-Shaped Aperture Metasurfaces. Adv. Theory Simul. 2019, 2, 1800167. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, L.; Zhang, H.; Li, X.; Li, H. Modulation of Surface Plasmonic Bending Beam via Nanoslit Interactions. Photonics 2022, 9, 896. https://doi.org/10.3390/photonics9120896
Li X, Wang L, Zhang H, Li X, Li H. Modulation of Surface Plasmonic Bending Beam via Nanoslit Interactions. Photonics. 2022; 9(12):896. https://doi.org/10.3390/photonics9120896
Chicago/Turabian StyleLi, Xiaoming, Liang Wang, Hang Zhang, Xueli Li, and Hui Li. 2022. "Modulation of Surface Plasmonic Bending Beam via Nanoslit Interactions" Photonics 9, no. 12: 896. https://doi.org/10.3390/photonics9120896
APA StyleLi, X., Wang, L., Zhang, H., Li, X., & Li, H. (2022). Modulation of Surface Plasmonic Bending Beam via Nanoslit Interactions. Photonics, 9(12), 896. https://doi.org/10.3390/photonics9120896