Research on Optical and Mechanical Compatible Design Technology of Multilayer Films
Abstract
:1. Introduction
2. Theoretical Model
2.1. Film Optical Design Theory
2.2. Film Stress Design Theory
3. Optical and Mechanical Compatible Design
4. Preparation of Ultra-Low Stress Long-Wave Infrared Antireflection Film
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haanappel, V.A.C.; Van Corbach, H.D.; Fransen, T.; Gellings, P.J. Cracking and delamination of metal organic vapour and deposited alumina and silica films. Mater. Sci. Eng. A 1993, 167, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Erdem Alaca, B.; Saif, M.T.A.; Sehitoglu, H. On the interface debond at the edge of a thin film on a thick substrate. Acta Mater. 2002, 50, 1197–1209. [Google Scholar] [CrossRef]
- Forschelen, P.J.J.; Suiker, A.S.J.; van der Sluis, O. Effect of residual stress on the delamination response of film-substrate systems under bending. Int. J. Solids Struct. 2016, 97–98, 284–299. [Google Scholar] [CrossRef]
- Khaledi, K.; Brepols, T.; Reese, S. A multiscale description of bond formation in cold roll bonding considering periodic cracking of thin surface films. Mech. Mater. 2019, 137, 103142. [Google Scholar] [CrossRef]
- Stylianou, R.; Velic, D.; Daves, W.; Ecker, W.; Stark, A.; Schell, N.; Tkadletz, M.; Schalk, N.; Czettl, C.; Mitterer, C. Stress relaxation through thermal crack formation in CVD TiCN coatings grown on WC-Co with different Co contents. Int. J. Refract. Met. Hard Mater. 2020, 86, 105102. [Google Scholar] [CrossRef]
- De Denus-Baillargeon, M.M.; Schmitt, T.; Larouche, S.; Martinu, L. Design and fabrication of stress-compensated optical coatings: Fabry-perot filters for astronomical applications. Appl. Opt. 2014, 53, 2616–2624. [Google Scholar] [CrossRef]
- Stout, J.H.; Shores, D.A.; Goedjen, J.G.; Armacanqui, M.E. Stresses and cracking of oxide scales. Mater. Sci. Eng. A 1989, 120–121, 193–197. [Google Scholar] [CrossRef]
- Tamulevičius, S. Stress and strain in the vacuum deposited thin films. Vacuum 1998, 51, 127–139. [Google Scholar] [CrossRef]
- Malerba, C.; Valentini, M.; Ricardo, C.A.; Rinaldi, A.; Cappelletto, E.; Scardi, P.; Mittiga, A. Blistering in Cu2ZnSnS4 thin films: Correlation with residual stresses. Mater. Des. 2016, 108, 725–735. [Google Scholar] [CrossRef]
- Liu, D.G.; Zheng, L.; Liu, J.Q.; Luo, L.M.; Wu, Y.C. Residual stress relief of hard a-C films though buckling. Ceram. Int. 2018, 44, 3644–3648. [Google Scholar] [CrossRef]
- Li, S.J.; Wu, K.; Yuan, H.Z.; Zhang, J.Y.; Liu, G.; Sun, J. Formation of wrinkled patterns in metal films deposited on elastic substrates: Tunability and wettability. Surf. Coat. Technol. 2019, 362, 35–43. [Google Scholar] [CrossRef]
- Leplan, H.; Geenen, B.; Robic, J.Y.; Pauleau, Y. Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior. J. Appl. Phys. 1995, 78, 962–968. [Google Scholar] [CrossRef]
- Chason, E. A Kinetic Model for Stress Evolution in Thin Films. J. Am. Dent. Assoc. Dent. Cosm. 2012, 25, 1017–1024. [Google Scholar] [CrossRef]
- Xu, C.; Qiang, Y.; Zhu, Y.; Zhai, T.; Guo, L.; Zhao, Y.; Shao, J.; Fan, Z. Laser-induced damage threshold at different wavelengths of Ta2O5 films annealed over a wide temperature range. Vacuum 2010, 84, 1310–1314. [Google Scholar] [CrossRef]
- Kičas, S.; Gimževskis, U.; Melnikas, S. Post deposition annealing of IBS mixture coatings for compensation of film induced stress. Opt. Mater. Express 2016, 6, 2236. [Google Scholar] [CrossRef]
- Bischoff, M.; Nowitzki, T.; Voß, O.; Wilbrandt, S.; Stenzel, O. Postdeposition treatment of ibs coatings for uv applications with optimized thin-film stress properties. Appl. Opt. 2014, 53, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Jalali, T.; Jafari, M.; Mohammadi, A. Genetic algorithm optimization of antireflection coating consisting of nanostructured thin films to enhance silicon solar cell efficacy. Mater. Sci. Eng. B 2019, 247, 114354. [Google Scholar] [CrossRef]
- Patel, S.J.; Kheraj, V. Optimization of the genetic operators and algorithm parameters for the design of a multilayer anti-reflection coating using the genetic algorithm. Opt. Laser Technol. 2015, 70, 94–99. [Google Scholar] [CrossRef]
- Patel, S.J.; Toshniwal, A.; Kheraj, V. A novel teaching-learning based optimization approach for design of broad-band anti-reflection coatings. Swarm Evol. Comput. 2017, 34, 68–74. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Ghasemi, M.; Sajjadi, Z. Evolutionary algorithm for optimization of multilayer coatings. Chin. Phys. B 2018, 27, 106802. [Google Scholar] [CrossRef]
- Patel, S.J.; Kheraj, V. Determination of refractive index and thickness of thin-film from reflectivity spectrum using genetic algorithm. AIP Conf. Proc. 2013, 1536, 509–510. [Google Scholar]
- Macleod, H.A. Thin-Film Optical Filters; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Suhir, E. Predicted thermally induced stresses in, and the bow of, a circular substrate/thin-film structure. J. Appl. Phys. 2000, 88, 2363–2370. [Google Scholar] [CrossRef]
- Klein, C.A. Normal and interfacial stresses in thin-film coated optics: The case of diamond-coated zinc sulfide windows. Opt. Eng. 2001, 40, 1115–1124. [Google Scholar] [CrossRef]
Film Materials | Auxiliary Voltage | Deposition Temperature | Refractive Index | Stress |
---|---|---|---|---|
V | °C | @8 μm | MPa | |
ZnS | 180 | 170 | 2.74 | −283 |
YbF3 | 360 | 170 | 1.65 | 84.9 |
Ge | 0 | 170 | 4.29 | 16.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Liu, H.; Li, Z.; Sun, P.; Yang, X.; Li, S.; Su, J. Research on Optical and Mechanical Compatible Design Technology of Multilayer Films. Photonics 2022, 9, 897. https://doi.org/10.3390/photonics9120897
Bai J, Liu H, Li Z, Sun P, Yang X, Li S, Su J. Research on Optical and Mechanical Compatible Design Technology of Multilayer Films. Photonics. 2022; 9(12):897. https://doi.org/10.3390/photonics9120897
Chicago/Turabian StyleBai, Jinlin, Huasong Liu, Ziyang Li, Peng Sun, Xiao Yang, Shida Li, and Jianzhong Su. 2022. "Research on Optical and Mechanical Compatible Design Technology of Multilayer Films" Photonics 9, no. 12: 897. https://doi.org/10.3390/photonics9120897
APA StyleBai, J., Liu, H., Li, Z., Sun, P., Yang, X., Li, S., & Su, J. (2022). Research on Optical and Mechanical Compatible Design Technology of Multilayer Films. Photonics, 9(12), 897. https://doi.org/10.3390/photonics9120897