Enhancing the Terahertz Absorption Spectrum Based on the Low Refractive Index All-Dielectric Metasurface
Abstract
:1. Introduction
2. Structure and Concept
3. Results Unit Cell Structure Design and Optimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Yan, D.; Wang, Y.; Qiu, Y.; Feng, Q.; Li, X.; Li, J.; Qiu, G.; Li, J. A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. Photonics 2022, 9, 335. [Google Scholar] [CrossRef]
- Sultana, J.; Islam, M.S.; Ahmed, K.; Dinovitser, A.; Ng, B.W.H.; Abbott, D. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 2018, 57, 2426–2433. [Google Scholar] [CrossRef] [PubMed]
- Yee, C.M.; Sherwin, M.S. High-Q terahertz microcavities in quartz photonic crystal slabs. Appl. Phys. Lett. 2009, 94, 4648. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Lang, T.; Jing, X.; Hong, Z. Multiband guided-mode resonance filter in bilayer asymmetric metallic gratings. Opt. Laser Technol. 2018, 103, 135–141. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, Y.K.; Manjappa, M.; Singh, R. Sensing with Toroidal Metamaterial. Appl. Phys. Lett. 2017, 110, 121108. [Google Scholar] [CrossRef]
- Yan, D.; Li, X.; Ma, C.; Qiu, G.; Cao, M.; Li, J.; Guo, S. Terahertz Refractive Index Sensing Based on Gradient Metasurface Coupled Confined Spoof Surface Plasmon Polaritons Mode. IEEE Sens. J. 2021, 22, 324–329. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Y. Temperature-Tunable Terahertz Perfect Absorber Based on All-Dielectric Strontium Titanate (STO) Resonator Structure. Adv. Theory Simul. 2022, 2200520. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Y.; Luo, H.; Chen, F.; Li, X. Dual-band tunable terahertz perfect bsorber based on all-dielectric InSb resonator structure for sensing application. J. Alloys Compd. 2022, 925, 166617. [Google Scholar] [CrossRef]
- Long, Z.; Liang, Y.; Feng, L.; Zhang, H.; Liu, M.; Xu, T. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface. Nanoscale 2020, 12, 10809–10815. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive Hyperspectral Imaging and Biodetection Enabled by Dielectric Metasurfaces. Nat. Photon. 2019, 13, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Cui, W.; Li, L.; Yu, Z.; Peng, W.; Xu, T. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting. Adv. Opt. Mater. 2019, 7, 1801269. [Google Scholar] [CrossRef]
- Feng, Q.Y.; Yan, D.X.; Li, X.J.; Li, J.N. Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials. Appl. Opt. 2022, 61, 4336–4343. [Google Scholar] [CrossRef]
- Samadi, M.; Abshari, F.; Algorri, J.F.; Varona, P.; Cobo, L.; Higuera, J.; Pena, J.; Zografopoulos, D.; Dell’Olio, F. All-Dielectric Metasurface Based on Complementary Split-Ring Resonators for Refractive Index Sensing. Photonics 2022, 9, 130. [Google Scholar] [CrossRef]
- Chen, J.; Kuang, Y.; Gu, P.; Feng, S.; Zhu, Y.; Tang, C.; Guo, Y.; Liu, Z.; Gao, F. Strong magnetic plasmon resonance in a simple metasurface for high-quality sensing. J. Lightwave Technol. 2021, 39, 4525–4528. [Google Scholar] [CrossRef]
- Tumashov, M.A.; del Risco, J.P.; Glybovski, S.B.; Sayanskiy, A.D.; Kuznetsov, S.A.; Baena, J.D. Comparison of angular-selective metasurfaces as tools for sub-THz single-frequency sensing. J. Phys. Conf. Ser. 2021, 2015, 012158. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, Z.H.; Du, Y.; Qin, J.Y. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics 2021, 10, 1295–1307. [Google Scholar] [CrossRef]
- Tognazzi, A.; Rocco, D.; Gandolfi, M.; Locatelli, A.; Carletti, L.; De Angelis, C. High Quality Factor Quartz Membrane Metasurface for Intensity-Based Refractive Index Sensing. Optics 2021, 2, 193–199. [Google Scholar] [CrossRef]
- Leitis, A.; Tittl, A.; Liu, M.; Lee, B.H.; Gu, M.B.; Kivshar, Y.S.; Altug, H. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.-Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-Based Molecular Barcoding with Pixelated Dielectric Metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Du, L.; Liu, Q.; Zhu, L.; Meng, K.; Zou, Y.; Zhang, B. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range. RSC Adv. 2020, 10, 33018–33025. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, X.; Li, F.; Zhu, J.; Feng, N. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagratings. Nanophotonics 2020, 9, 2927–2935. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, S.; Xie, Y.; Li, F.; Du, L.; Meng, K.; Zhu, L.; Zhou, J. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt. Lett. 2020, 45, 2335–2338. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W. Tunable bound states in the continuum in all-dielectric terahertz metasurfaces. Nanomaterials 2020, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.; Locquet, A.; Citrin, D.S. Terahertz Dielectric Characterization of Low-Loss Thermoplastics for 6G Applications. Int. J. Wirel. Inform. Netw. 2022, 29, 269–274. [Google Scholar] [CrossRef]
- You, B.; Peng, C.-C.; Jhang, J.-S.; Chen, H.-H.; Yu, C.-P.; Lai, W.-C.; Liu, T.-A.; Peng, J.-L.; Lu, J.-L. Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing. Opt. Express 2014, 22, 11340–11350. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Han, Z.; Maeda, H.; Ma, Y. Bragg-mirror-assisted high-contrast plasmonic interferometers: Concept and potential in terahertz sensing. Nanomaterials 2020, 10, 1385. [Google Scholar] [CrossRef]
- Li, X.; Ma, C.; Yan, D.; Guo, S.; Zhang, L.; Yang, J.; Zhao, Y.; Zhou, W. Enhanced trace-amount terahertz vibrational absorption spectroscopy using surface spoof polarization in metasurface structures. Opt. Lett. 2022, 47, 2446–2449. [Google Scholar] [CrossRef]
- Basharin, A.A.; Kafesaki, M.; Economou, E.N.; Soukoulis, C.M.; Fedotov, V.A.; Savinov, V.; Zheludev, N.I. Dielectric Metamaterials with Toroidal Dipolar Response. Phys. Rev. X 2015, 5, 011036. [Google Scholar] [CrossRef] [Green Version]
- Radescu, E.E.; Vaman, G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E 2002, 65, 046609. [Google Scholar] [CrossRef]
- Savinov, V.; Fedotov, V.A.; Zheludev, N.I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B 2014, 89, 205112. [Google Scholar] [CrossRef]
- Li, X.; Yin, J.; Liu, Z.; Wang, Y.; Hong, Z. Tailoring the excitation of two kinds of toroidal dipoles in all-dielectric metasurfaces. Optik 2020, 201, 163502. [Google Scholar] [CrossRef]
Ref. | Cell Structure | Analyte | Multiplexing Mode | Working Band | Absorbance Peak Enhancement Factor |
---|---|---|---|---|---|
[21] | Dielectric Pair Pillars | PMMA | Angle of incident | Mid-infrared | ~50 times |
[22] | Dielectric Pair Pillars | PMMA | Geometry | Mid-infrared | ~60 times |
[24] | Dielectric Grating | hBN | Angle of incident | Mid-infrared | ~30 times |
[25] | Dielectric Grating | ɑ-lactose | Angle of incident | THz | ~20 times |
This work | Dielectric Metasurface | lactose | Angle of incident | THz | ~45 times |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Li, W.; Chen, N.; Ma, C.; Li, X.; Yan, D. Enhancing the Terahertz Absorption Spectrum Based on the Low Refractive Index All-Dielectric Metasurface. Photonics 2022, 9, 848. https://doi.org/10.3390/photonics9110848
Liu P, Li W, Chen N, Ma C, Li X, Yan D. Enhancing the Terahertz Absorption Spectrum Based on the Low Refractive Index All-Dielectric Metasurface. Photonics. 2022; 9(11):848. https://doi.org/10.3390/photonics9110848
Chicago/Turabian StyleLiu, Pingan, Wenping Li, Naichang Chen, Chan Ma, Xiangjun Li, and Dexian Yan. 2022. "Enhancing the Terahertz Absorption Spectrum Based on the Low Refractive Index All-Dielectric Metasurface" Photonics 9, no. 11: 848. https://doi.org/10.3390/photonics9110848
APA StyleLiu, P., Li, W., Chen, N., Ma, C., Li, X., & Yan, D. (2022). Enhancing the Terahertz Absorption Spectrum Based on the Low Refractive Index All-Dielectric Metasurface. Photonics, 9(11), 848. https://doi.org/10.3390/photonics9110848