Optical and Scintillation Properties of Tb-Doped Rare-Earth Pyrosilicate Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Sample Conditions
3.2. Photoluminescence Propterties
3.3. Scintillation Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Eijk, C.W.E. Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. B 2001, 460, 1–14. [Google Scholar] [CrossRef]
- Kumar, V.; Luo, Z. A review on x-ray excited emission decay dynamics in inorganic scintillator materials. Photonics 2021, 8, 71. [Google Scholar] [CrossRef]
- Ronda, C.; Wieczorek, H.; Khanin, V.; Rodnyi, P. Review-scintillators for medical imaging: A tutorial overview. ECS J. Solid State Sci. Technol. 2016, 5, R3121–R3125. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Ranasinghe, M.; Rajamanthrilage, A.C.; Bhattacharya, S.; Anker, J.N. Fast and Inexpensive Separation of Bright Phosphor Particles from Commercial Sources by Gravitational and Centrifugal Sedimentation for Deep Tissue X-ray Luminescence Imaging. Photonics 2022, 9, 347. [Google Scholar] [CrossRef]
- Bloser, P.F.; Legere, J.S.; Bancroft, C.M.; McConnell, M.L.; Ryan, J.M. Scintillators with silicon photomultiplier readouts for high-energy astrophysics and heliophysics. In Proceedings of the Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Montréal, Canada, 22–26 June 2014; Takahashi, T., den Herder, J.-W.A., Bautz, M., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9144, p. 914414. [Google Scholar]
- Fuschino, F.; Campana, R.; Labanti, C.; Evangelista, Y.; Feroci, M.; Burderi, L.; Fiore, F.; Ambrosino, F.; Baldazzi, G.; Bellutti, P.; et al. HERMES: An ultra-wide band X and gamma-ray transient monitor on board a nano-satellite constellation. Nucl. Instrum. Methods Phys. Res. B 2019, 936, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Parshin, A.; Morozov, V.; Snegirev, N.; Valkova, E.; Shikalenko, F. Advantages of gamma-radiometric and spectrometric low-altitude geophysical surveys by unmanned aerial systems with small scintillation detectors. Appl. Sci. 2021, 11, 2247. [Google Scholar] [CrossRef]
- Yuasa, T.; Wada, Y.; Enoto, T.; Furuta, Y.; Tsuchiya, H.; Hisadomi, S.; Tsuji, Y.; Okuda, K.; Matsumoto, T.; Nakazawa, K.; et al. Thundercloud Project: Exploring high-energy phenomena in thundercloud and lightning. Prog. Theor. Exp. Phys. 2020, 2020, 103H01. [Google Scholar] [CrossRef]
- Enoto, T.; Wada, Y.; Furuta, Y.; Nakazawa, K.; Yuasa, T.; Okuda, K.; Makishima, K.; Sato, M.; Sato, Y.; Nakano, T.; et al. Photonuclear reactions triggered by lightning discharge. Nature 2017, 551, 481–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, Y.; Matsumoto, T.; Enoto, T.; Nakazawa, K.; Yuasa, T.; Furuta, Y.; Yonetoku, D.; Sawano, T.; Okada, G.; Nanto, H.; et al. Catalog of gamma-ray glows during four winter seasons in Japan. Phys. Rev. Res. 2021, 3, 7–9. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Li, C.; Liu, Y.; Luo, H. Construction and test of a single sphere neutron spectrometer based on pairs of 6Li-and 7Li-glass scintillators. Radiat. Meas. 2019, 127, 106143. [Google Scholar] [CrossRef]
- Lee, H.C.; Shin, W.G.; Choi, H.J.; Choi, C.I.; Park, C.S.; Kim, H.S.; Min, C.H. Radioisotope identification using an energy-weighted algorithm with a proof-of-principle radiation portal monitor based on plastic scintillators. Appl. Radiat. Isot. 2020, 156, 109010. [Google Scholar] [CrossRef] [PubMed]
- Paff, M.G.; Di Fulvio, A.; Clarke, S.D.; Pozzi, S.A. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor. Nucl. Instrum. Methods Phys. Res. B 2017, 849, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Ryzhikov, V.D.; Naydenov, S.V.; Piven, L.A.; Onyshchenko, G.M.; Smith, C.F.; Pochet, T. Fast neutron detectors and portal monitors based on solid-state heavy-oxide scintillators. Radiat. Meas. 2017, 105, 17–25. [Google Scholar] [CrossRef]
- Cieślak, M.; Gamage, K.; Glover, R. Critical Review of Scintillating Crystals for Neutron Detection. Crystals 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Cheng, Y.; Yang, Y.; Peng, Y.; Li, H.; Xiong, Y.; Zhu, T. Image reconstruction using multi-energy system matrices with a scintillator-based gamma camera for nuclear security applications. Appl. Radiat. Isot. 2020, 163, 109217. [Google Scholar] [CrossRef] [PubMed]
- Glodo, J.; Wang, Y.; Shawgo, R.; Brecher, C.; Hawrami, R.H.; Tower, J.; Shah, K.S. New Developments in Scintillators for Security Applications. Phys. Procedia 2017, 90, 285–290. [Google Scholar] [CrossRef]
- Ryzhikov, V.D.; Opolonin, A.D.; Pashko, P.V.; Svishch, V.M.; Volkov, V.G.; Lysetskaya, E.K.; Kozin, D.N.; Smith, C. Instruments and detectors on the base of scintillator crystals ZnSe(Te), CWO, CsI(Tl) for systems of security and customs inspection systems. Nucl. Instrum. Methods Phys. Res. B 2005, 537, 424–430. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Kamada, K.; Takahashi, H.; Fukazawa, Y.; Nikl, M.; Chani, V. Temperature dependence of scintillation properties of bright oxide scintillators for well-logging. Jpn. J. Appl. Phys. 2013, 52, 3–9. [Google Scholar] [CrossRef]
- Melcher, C.L. Scintillators for well logging applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 1989, 40–41, 1214–1218. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Nakauchi, D.; Yanagida, T.; Koshimizu, M.; Asai, K. New Intrinsic Fast Scintillator: Cesium Praseodymium Chloride. Sens. Mater. 2022, 34, 629–636. [Google Scholar] [CrossRef]
- Rinaldi, D.; Montalto, L.; Lebeau, M.; Mengucci, P. Influence of a surface finishing method on light collection behaviour of PWO scintillator crystals. Photonics 2018, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, M.; Higuchi, M.; Nishikido, F.; Yamaya, T.; Takeda, T.; Masubuchi, Y.; Kaneko, J.H. Spectral properties and β-ray scintillation of GdVO4:Eu single crystals grown by the floating zone method. J. Lumin. 2022, 251, 119208. [Google Scholar] [CrossRef]
- Chaiphaksa, W.; Borisut, P.; Kim, H.J.; Kothan, S.; Kaewkhao, J. Photon interaction of molybdenum (Mo) based cesium tri-molybdate (Cs2Mo3O10) and disodium dimolybdate (Na2Mo2O7) single crystal scintillators. Radiat. Phys. Chem. 2022, 201, 110373. [Google Scholar] [CrossRef]
- Rutstrom, D.; Stand, L.; Delzer, C.; Kapusta, M.; Glodo, J.; van Loef, E.; Shah, K.; Koschan, M.; Melcher, C.L.; Zhuravleva, M. Improved light yield and growth of large-volume ultrafast single crystal scintillators Cs2ZnCl4 and Cs3ZnCl5. Opt. Mater. 2022, 133, 112912. [Google Scholar] [CrossRef]
- Tariwong, Y.; Vuong, P.Q.; Luan, N.T.; Saha, S.; Kim, H.J.; Wantana, N.; Chanthima, N.; Kaewkhao, J.; Kothan, S. Crystal growth and scintillation properties of Tm3+ doped LaCl3 single crystal for radiation detection. Radiat. Phys. Chem. 2022, 200, 110347. [Google Scholar] [CrossRef]
- Zaitseva, N.; Rupert, B.L.; PaweŁczak, I.; Glenn, A.; Martinez, H.P.; Carman, L.; Faust, M.; Cherepy, N.; Payne, S. Plastic scintillators with efficient neutron/gamma pulse shape discrimination. Nucl. Instrum. Methods Phys. Res. B 2012, 668, 88–93. [Google Scholar] [CrossRef]
- Hiyama, F.; Noguchi, T.; Koshimizu, M.; Kishimoto, S.; Haruki, R.; Nishikido, F.; Fujimoto, Y.; Aida, T.; Takami, S.; Adschiri, T.; et al. X-ray detection properties of plastic scintillators containing surface-modified Bi2O3 nanoparticles. Jpn. J. Appl. Phys. 2018, 57, 052203. [Google Scholar] [CrossRef]
- Hwang, J.; Jeon, B.; Kim, J.; Kim, H.; Cho, G. Deep learning-based spectrum-dose prediction for a plastic scintillation detector. Radiat. Phys. Chem. 2022, 201, 110444. [Google Scholar] [CrossRef]
- Joukainen, H.; Sarén, J.; Ruotsalainen, P. Position sensitive plastic scintillator for beta particle detection. Nucl. Instrum. Methods Phys. Res. B 2022, 1027, 166253. [Google Scholar] [CrossRef]
- Ryabeva, E.V.; Urupa, I.V.; Lupar, E.E.; Kadilin, V.V.; Skotnikova, A.V.; Kokorev, Y.A.; Ibragimov, R.F. Calibration of EJ-276 plastic scintillator for neutron–gamma pulse shape discrimination experiments. Nucl. Instrum. Methods Phys. Res. B 2021, 1010, 165495. [Google Scholar] [CrossRef]
- Zaman, F.; Srisittipokakun, N.; Rooh, G.; Kaewkhao, J.; Ullah, I.; Rani, M.; Kim, H.J. Development of Na2O-MO-Bi2O3-B2O3-Sm2O3 glasses (MO=Ba/Mg) for laser and scintillation application. J. Non. Cryst. Solids 2021, 561, 120722. [Google Scholar] [CrossRef]
- Wantana, N.; Kaewnuam, E.; Kim, H.J.; Kang, S.C.; Ruangtaweep, Y.; Kothan, S.; Kaewkhao, J. X-ray/proton and photoluminescence behaviors of Sm3+ doped high-density tungsten gadolinium borate scintillating glass. J. Alloys Compd. 2020, 849, 156574. [Google Scholar] [CrossRef]
- Tang, J.; Lin, Z.; Tu, D.; Wei, T.; Duan, R.; Zhou, S. Design and fabrication of Tb3+ doped Gd2O3-WO3-SiO2 scintillating glass. J. Non-Cryst. Solids X 2022, 15, 100110. [Google Scholar] [CrossRef]
- Amelina, A.; Mikhlin, A.; Belus, S.; Bondarev, A.; Borisevich, A.; Kuznetsova, D.; Komrotov, I.; Mechinsky, V.; Kozlov, D.; Volkov, P.; et al. (Gd,Ce)2O3-Al2O3-SiO2 scintillation glass. J. Non-Cryst. Solids 2022, 580, 121393. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, D.; Li, Y.; Xu, L.; Wang, S.; Wu, S. Scintillation properties of Ce3+/Tb3+ co-doped oxyfluoride aluminosilicate glass for exploration of X-ray imaging. J. Lumin. 2022, 245, 118762. [Google Scholar] [CrossRef]
- Kunikata, T.; Kato, T.; Shiratori, D.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Scintillation Properties of Li-doped ZnO Translucent Ceramic. Sens. Mater. 2022, 34, 661. [Google Scholar] [CrossRef]
- Sun, Z.; Lu, B.; Ren, G.; Chen, H. Synthesis of Green-Emitting Gd2O2S:Pr3+ Phosphor Nanoparticles and Fabrication of Translucent Gd2O2S:Pr3+ Scintillation Ceramics. Nanomaterials 2020, 10, 1639. [Google Scholar] [CrossRef]
- Trofimov, A.A.; DeVol, T.A.; Jacobsohn, L.G. Comparative investigation of transparent polycrystalline ceramic and single crystal Lu3Al5O12:Ce scintillators: Microstructural and thermoluminescence analyses. J. Lumin. 2021, 238, 118229. [Google Scholar] [CrossRef]
- Seeley, Z.M.; Cherepy, N.J.; Payne, S.A. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J. Cryst. Growth 2013, 379, 79–83. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Li, W.; Mei, B.; Liu, Z.; Zhang, Y. Fabrication and scintillation characterizations of high concentration Ce3+ doped BaF2 transparent ceramic. Nucl. Instrum. Methods Phys. Res. B 2020, 980, 164497. [Google Scholar] [CrossRef]
- Okazaki, K.; Onoda, D.; Nakauchi, D.; Kawano, N.; Fukushima, H.; Kato, T.; Kawaguchi, N.; Yanagida, T. Scintillation Properties of an Organic–Inorganic Lead Iodide Perovskite Single Crystal Having Quantum Well Structures. Sens. Mater. 2022, 34, 575. [Google Scholar] [CrossRef]
- Gorbenko, V.; Zorenko, Y.; Savchyn, V.; Zorenko, T.; Pedan, A.; Shkliarskyi, V. Growth and luminescence properties of Pr3+-doped single crystalline films of garnets and perovskites. Radiat. Meas. 2010, 45, 461–464. [Google Scholar] [CrossRef]
- Jana, A.; Cho, S.; Patil, S.A.; Meena, A.; Jo, Y.; Sree, V.G.; Park, Y.; Kim, H.; Im, H.; Taylor, R.A. Perovskite: Scintillators, direct detectors, and X-ray imagers. Mater. Today 2022, 55, 110–136. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.-L.; Li, Y.; Yang, Y.-L.; Zhang, S.-L.; Zhao, J.; Wan, J.; Zhang, Z. Water-assistant ultrahigh fluorescence enhancement in perovskite polymer-encapsulated film for flexible X-ray scintillators. Chem. Eng. J. 2023, 452, 139132. [Google Scholar] [CrossRef]
- Dorenbos, P. The quest for high resolution γ-ray scintillators. Opt. Mater. X 2019, 1, 100021. [Google Scholar] [CrossRef]
- Pidol, L.; Kahn-Harari, A.; Viana, B.; Virey, E.; Ferrand, B.; Dorenbos, P.; de Haas, J.T.M.; van Eijk, C.W.E. High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals. IEEE Trans. Nucl. Sci. 2004, 51, 1084–1087. [Google Scholar] [CrossRef]
- Feng, H.; Ding, D.; Li, H.; Lu, S.; Pan, S.; Chen, X.; Ren, G. Cerium concentration and temperature dependence of the luminescence of Lu2Si2O7:Ce scintillator. J. Alloys Compd. 2011, 509, 3855–3858. [Google Scholar] [CrossRef]
- Pidol, L.; Kahn-Harari, A.; Viana, B.; Basset, G.; Calvat, C.; Chambaz, B.; Ferrand, B. Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+: Lu2Si2O7. J. Cryst. Growth 2005, 275, e899–e904. [Google Scholar] [CrossRef]
- Yan, C.; Zhao, G.; Hang, Y.; Zhang, L.; Xu, J. Comparison of cerium-doped Lu2Si2O7 and Lu2SiO5 scintillators. J. Cryst. Growth 2005, 281, 411–415. [Google Scholar] [CrossRef]
- Pidol, L.; Viana, B.; Kahn-Harari, A.; Ferrand, B.; Dorenbos, P.; Van Eijk, C.W.E. Scintillation and thermoluminescence properties of Lu2Si2O7: Ce3+ crystals. Nucl. Instrum. Methods Phys. Res. B 2005, 537, 256–260. [Google Scholar] [CrossRef]
- Pidol, L.; Guillot-Noël, O.; Kahn-Harari, A.; Viana, B.; Pelenc, D.; Gourier, D. EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5. J. Phys. Chem. Solids 2006, 67, 643–650. [Google Scholar] [CrossRef]
- Kantuptim, P.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Ce concentration dependence on scintillation properties of Ce-doped yttrium pyrosilicate single crystal. Radiat. Phys. Chem. 2022, 197, 110160. [Google Scholar] [CrossRef]
- Kantuptim, P.; Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Tm concentration dependence of scintillation characteristics on Tm-doped Lu2Si2O7 single crystal. J. Alloys Compd. 2020, 847, 156542. [Google Scholar] [CrossRef]
- Watanabe, K.; Yanagida, T.; Nakauchi, D.; Kawaguchi, N. Scintillation light yield of Tb:Sr2Gd8(SiO4)6O2. Jpn. J. Appl. Phys. 2021, 60, 106002. [Google Scholar] [CrossRef]
- Yanagida, T.; Kamada, K.; Fujimoto, Y.; Yagi, H.; Yanagitani, T. Comparative study of ceramic and single crystal Ce: GAGG scintillator. Opt. Mater. 2013, 35, 2480–2485. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Ito, T.; Uchiyama, K.; Mori, K. Development of X-ray-induced afterglow characterization system. Appl. Phys. Express 2014, 7, 18–21. [Google Scholar] [CrossRef]
- Fukushima, H.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Photoluminescence and Scintillation Properties of Ce-doped SrHfO3. Sens. Mater. 2019, 31, 1273. [Google Scholar] [CrossRef] [Green Version]
- Kantuptim, P.; Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Optical and Scintillation Properties of Nd-doped Lu2Si2O7 Single Crystals. J. Alloys Compd. 2020, 860, 158538. [Google Scholar] [CrossRef]
- Holl, I.; Lorenz, E.; Mageras, G. A measurement of the light yield of common inorganic scintillators. IEEE Trans. Nucl. Sci. 1988, 35, 105–109. [Google Scholar] [CrossRef]
- Wolff, N.; Klimm, D. Determination of the phase diagram Tb2O3–SiO2 and crystal growth of the rare earth pyrosilicate Tb2Si2O7 by the optical floating-zone (OFZ) technique. J. Solid State Chem. 2022, 312, 123269. [Google Scholar] [CrossRef]
- Feng, H.; Xu, W.; Ren, G.; Yang, Q.; Xie, J.; Xu, J.; Xu, J. Optical, scintillation properties and defect study of Gd2Si2O7:Ce single crystal grown by floating zone method. Phys. B Condens. Matter 2013, 411, 114–117. [Google Scholar] [CrossRef]
- Kantuptim, P.; Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Scintillation properties of Pr-doped Lu2Si2O7 single crystal. Radiat. Meas. 2020, 134, 106320. [Google Scholar] [CrossRef]
- Kantuptim, P.; Akatsuka, M.; Kawaguchi, N.; Yanagida, T. Optical and scintillation properties of Pr-doped Y2Si2O7 single crystal. Jpn. J. Appl. Phys. 2020, 59, SCCB17. [Google Scholar] [CrossRef]
- Kantuptim, P.; Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Scintillation Characteristics of Pr-doped Gd2Si2O7 Single Crystal. Sens. Mater. 2020, 32, 1357. [Google Scholar] [CrossRef]
- Kantuptim, P.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Scintillation Properties of Pr-Doped Lanthanum Pyrosilicate Single Crystals. Crystals 2022, 12, 459. [Google Scholar] [CrossRef]
- Kantuptim, P.; Fukushima, H.; Kimura, H.; Nakauchi, D.; Kato, T.; Koshimizu, M.; Kawaguchi, N.; Yanagida, T. VUV- and X-ray-induced Properties of Lu2Si2O7, Y2Si2O7, and Gd2Si2O7 Single Crystals. Sens. Mater. 2021, 33, 2195. [Google Scholar] [CrossRef]
- Kawano, N.; Akatsuka, M.; Kimura, H.; Okada, G.; Kawaguchi, N.; Yanagida, T. Scintillation and TSL properties of Tb-doped NaPO3-Al(PO3)3 glasses. Radiat. Meas. J. 2018, 117, 52–56. [Google Scholar] [CrossRef]
- Matsuo, T.; Kato, T.; Kimura, H.; Nakamura, F.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Evaluation of dosimetric properties of Tb-doped Mg F2 transparent ceramics. Optik 2020, 203, 163965. [Google Scholar] [CrossRef]
- Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Characterization of Eu-doped Ba2SiO4, a high light yield scintillator. Appl. Phys. Express 2020, 13, 2–5. [Google Scholar] [CrossRef]
- Nagornaya, L.; Onyshchenko, G.; Pirogov, E.; Starzhinskiy, N.; Tupitsyna, I.; Ryzhikov, V.; Galich, Y.; Vostretsov, Y.; Galkin, S.; Voronkin, E. Production of the high-quality CdWO4 single crystals for application in CT and radiometric monitoring. Nucl. Instrum. Methods Phys. Res. B 2005, 537, 163–167. [Google Scholar] [CrossRef]
Sample Name | Scintillation Light Yield (ph/MeV) | Energy Resolution (%) |
---|---|---|
Tb-doped LPS | 20,700 | 15.2 |
Tb-doped YPS | 29,600 | 10.6 |
Tb-doped GPS | 95,600 | 30.3 |
Tb-doped LaPS | 47,700 | 16.8 |
BGO | 8200 [60] | 26.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantuptim, P.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Watanabe, K.; Yanagida, T. Optical and Scintillation Properties of Tb-Doped Rare-Earth Pyrosilicate Single Crystals. Photonics 2022, 9, 765. https://doi.org/10.3390/photonics9100765
Kantuptim P, Kato T, Nakauchi D, Kawaguchi N, Watanabe K, Yanagida T. Optical and Scintillation Properties of Tb-Doped Rare-Earth Pyrosilicate Single Crystals. Photonics. 2022; 9(10):765. https://doi.org/10.3390/photonics9100765
Chicago/Turabian StyleKantuptim, Prom, Takumi Kato, Daisuke Nakauchi, Noriaki Kawaguchi, Kenichi Watanabe, and Takayuki Yanagida. 2022. "Optical and Scintillation Properties of Tb-Doped Rare-Earth Pyrosilicate Single Crystals" Photonics 9, no. 10: 765. https://doi.org/10.3390/photonics9100765
APA StyleKantuptim, P., Kato, T., Nakauchi, D., Kawaguchi, N., Watanabe, K., & Yanagida, T. (2022). Optical and Scintillation Properties of Tb-Doped Rare-Earth Pyrosilicate Single Crystals. Photonics, 9(10), 765. https://doi.org/10.3390/photonics9100765