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Abstract: Series of 1.0% Terbium (Tb)-doped rare-earth pyrosilicate single crystals including Lu2Si2O7

(LPS), Y2Si2O7 (YPS), Gd2Si2O7 (GPS), and La2Si2O7 (LaPS) have been prepared by the floating-zone
method. After the phase confirmation by powder X-ray diffraction, the properties are measured on
both photoluminescence and scintillation aspects, including the photoluminescence emission contour
graph and decay times, X-ray induced scintillation spectra and decay times, afterglow profiles,
and the recently developed pulse height spectra for scintillators with millisecond decay time. The
results indicate the multiple emissions from Tb3+ 4f-4f transition with the dominant emission at
540 nm (5D4 → 7F5) on both ultraviolet and X-ray excitation with the decay time around 2.6–5.6
and 1.3–3.2 ms, respectively. Under the γ-ray irradiation from 137Cs, the Tb-doped LPS, YPS, GPS,
and LaPS have presented scintillation light yields of 20,700, 29,600, 95,600, and 47,700 ph/MeV with
±10%, respectively, which considerably very high among the oxide scintillators.

Keywords: scintillator 1; Tb3+ 2; pulse-height 3

1. Introduction

A scintillator is a special category in luminescence materials that have the ability to
convert the ionizing radiation and charge particles to lower energy photons such as ultravi-
olet, visible, and infrared light [1,2]. From this unique property, a combination between
scintillator materials and the photodetector or so-called scintillation detector has been im-
plemented in many professional fields related to ionizing radiation including medical [3,4],
astrophysics [5,6], geophysics [7–10], environmental observation [11–14], homeland se-
curity [15–18], natural resource exploration [19,20], and more. For each application with
different demands, scintillator materials have come in various forms of materials such as
single crystal [21–26], polymer [27–31], glass [32–36], transparent ceramics [37–41], and
inorganic-organic perovskite composite [42–45]. In the present day, the lanthanide-doped
single crystal is one of the main focus materials for the scintillator in both academic and
industrial fields because of attractive scintillation properties [46]. Pyrosilicate materials are
one of the interesting host materials for lanthanide doped oxide single crystal scintillator.
One of the examples and the earliest report of pyrosilicate scintillator is Ce-doped Lu2Si2O7
(LPS) with impressive scintillation properties such as high light yield at 26,300 ph/MeV
and fast decay time of 38 ns [47–52]. Since the introduction of the Ce-doped LPS, the
research of the pyrosilicate crystal has become popular for the novel oxide scintillators
through changing the rare-earth ions in the host and luminescence center to other rare earth
ions, and examples are Ce-doped Y2Si2O7 (YPS) [53] and Nd-doped LPS [54]. However, in
the past, the evaluation of scintillation light yield which was measured by conventional
pulse height measurement was limited to the scintillators with a decay time of less than
milliseconds. Until recently, the Tb-doped Sr2Gd8(SiO4)6O2 has been the first report on ms
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decay time scintillator with scintillation light yield measured by a newly developed sys-
tem [55]. The combination between the ms decay time luminescence center such as Tb and
the pyrosilicate crystal has not been studied, and Tb-doped pyrosilicate is expected to have
high light yield.

This study is the first investigation to introduce Tb to the various pyrosilicate single
crystals including LPS, YPS, Gd2Si2O7 (GPS), and La2Si2O7 (LaPS). The characterizations of
these compounds are focused on both photoluminescence (PL) and scintillation properties
including PL emission, PL decay time, scintillation spectrum, scintillation decay time,
afterglow level, and newly developed pulse height spectra for ms decay time scintillator.
In addition, this report also provides the possibility, trends, and potentials of combination
between Tb as luminescence center in the different rare-earth pyrosilicate.

2. Materials and Methods

The Tb-doped LPS, YPS, GPS, and LaPS samples are carefully synthesized by following
orders. First, the 99.99% purity powder of raw materials in including SiO2, Tb4O7, Lu2O3
(for LPS), Y2O3 (for YPS), Gd2O3 (for GPS), and Lu2O3 (for LaPS) has been weighted and
mixed by an agate mortar. Tb concentration in every sample is fixed to the 1.0 mol%
with respect to each rare-earth site (Lu, Y, Gd, and La). The well-mixed powder has
been shaped to the rod by applying isostatic pressure. Each obtained rod is sintering in
the furnace for 10 h at 1200 ◦C for LPS, YPS, and GPS, and 1400 ◦C for LaPS. By these
sintered ceramic rods, single crystal growth is done by desktop floating-zone furnace
(FZD0192, Canon machinery). The furnace uses two halogen lamps as a heat source.
The crystal growth rate is 4 mm/h. The obtained single crystal rods are cut to 1 mm in
thickness and polished on both sides of the surface. The leftover crystals pieces from the
cutting process have been ground for phase confirmation by powder X-ray diffraction
(MiniFlex600, Rigaku Corporation, Tokyo, Japan). The polished samples have been used
for diffused transmittance measurement by spectrophotometer (SolidSpec-3700, Shimadzu
Corporation, Kyoto, Japan) at a wavelength of 200–800 nm. The PL emission contour
graph and PL quantum yield (QY) are achieved by using Quantaurus-QY (C11347-01,
Hamamatsu Photonics K.K., Shizuoka, Japan), with excitation wavelength from 250–400 nm
and observation wavelength from 300–700 nm. On the other hand, The PL decay time
analysis is performed by Quantaurus-τ (C11367, Hamamatsu Photonics K.K., Shizuoka,
Japan). The excitation light is controlled by a halogen lamp with the applied 340–390 nm
bandpass filter. The observation wavelength is 550 nm which is generated from Tb3+ 4f-4f
emission.

In the scintillation properties, X-ray induced scintillation spectra are performed by our
original setup [56]. The irradiated X-ray dose used for spectrum observation is 1 Gy. X-ray
induced scintillation decay time and the afterglow analysis are also performed by using our
original system equipped with the pulsed X-rays source and the afterglow characterization
system [57]. The observation wavelength is from 160–650 nm. The calculation of the
afterglow level is consistent with our previous works as the following equation [58,59],
Af 20 = (I20-Ibg)/Imax when the Af 20 is the afterglow level at 20 ms after X-ray irradiation, I20
is the signal intensity at 20 ms after X-ray irradiation, Ibg is the signal intensity before X-ray
irradiation or so call background intensity, and Imax is the maximum value of the signal
intensity during the X-ray irradiation. The pulse height spectra and absolute scintillation
light yield of the Tb-doped pyrosilicate samples are measured by the recently developed ms
decay time pulse height setup [55]. Strictly speaking, the spectrum observed by this setup is
not a pulse height but a pulse area. However, the physical meaning is the same, and to avoid
complexity, the common term of pulse height is used in this work. In this measurement,
the voltage of −550 V has been applied to the PMT (R7600U-200, Hamamatsu Photonics),
thus the signal from PMT is sent to the digitizer (Model 1819-16, Clear Pulse). 137Cs has
been selected for a γ-ray source (662 keV). In addition, a Bi4Ge3O12 (BGO) scintillator with
a scintillation light yield of 8200 ph/MeV has been selected as a reference sample for this
measurement [60].
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3. Results and Discussions
3.1. Sample Conditions

Figure 1a presents the photographs of Tb-doped LPS, YPS, GPS, and LaPS single crystal
rods obtained from the floating-zone method, with the crystal rods length of 20–25 mm
and diameter of 4 mm. The visible cracks throughout the entire crystal rods appear in
every sample. The cracks are consistent with the previous attempt on the crystal growth of
pyrosilicate crystals by the floating zone method [61,62]. However, after cut and polished,
relatively clear and transparent sample is obtained as presented in Figure 1b, with the
bright yellow-green luminescence from the Tb-doped under the 254 nm UV lamp presented
in Figure 1a. Figure 2 shows the XRD patterns of the Tb-doped LPS, YPS, GPS, and LaPS
powders with an individual reference pattern. Similar to our previous reports, the Tb-doped
LPS and YPS patterns belong to monoclinic Lu2Si2O7 (COD 8400597) [63] and Y2Si2O7
(JCPDS 82-0732) [64], respectively. The Tb-doped GPS pattern agrees with orthorhombic
Gd2Si2O7 (COD 9011106) [65], and that of Tb-doped LaPS pattern matches with monoclinic
Lu2Si2O7 (JCPDS 82-0729) [66]. In all four samples, no impurity phases are detected. In
addition, the substitution of 1 mol% Tb to rare-earth site in the pyrosilicate structure is
achieved and not affected the XRD pattern.
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Figure 1. Tb-doped LPS, YPS, GPS, and LaPS samples photographs of (a) as-grown single crystal
rods; (b) cut and polished specimens in room light and 254 nm UV.

Photonics 2022, 9, x FOR PEER REVIEW 3 of 11 
 

 

Bi4Ge3O12 (BGO) scintillator with a scintillation light yield of 8200 ph/MeV has been se-
lected as a reference sample for this measurement [60]. 

3. Results and Discussions 
3.1. Sample Conditions 

Figure 1a presents the photographs of Tb-doped LPS, YPS, GPS, and LaPS single 
crystal rods obtained from the floating-zone method, with the crystal rods length of 20–
25 mm and diameter of 4 mm. The visible cracks throughout the entire crystal rods appear 
in every sample. The cracks are consistent with the previous attempt on the crystal growth 
of pyrosilicate crystals by the floating zone method [61,62]. However, after cut and pol-
ished, relatively clear and transparent sample is obtained as presented in Figure 1b, with 
the bright yellow-green luminescence from the Tb-doped under the 254 nm UV lamp pre-
sented in Figure 1a. Figure 2 shows the XRD patterns of the Tb-doped LPS, YPS, GPS, and 
LaPS powders with an individual reference pattern. Similar to our previous reports, the 
Tb-doped LPS and YPS patterns belong to monoclinic Lu2Si2O7 (COD 8400597) [63] and 
Y2Si2O7 (JCPDS 82-0732) [64], respectively. The Tb-doped GPS pattern agrees with ortho-
rhombic Gd2Si2O7 (COD 9011106) [65], and that of Tb-doped LaPS pattern matches with 
monoclinic Lu2Si2O7 (JCPDS 82-0729) [66]. In all four samples, no impurity phases are de-
tected. In addition, the substitution of 1 mol% Tb to rare-earth site in the pyrosilicate struc-
ture is achieved and not affected the XRD pattern. 

 
(a) (b) 

Figure 1. Tb-doped LPS, YPS, GPS, and LaPS samples photographs of (a) as-grown single crystal 
rods; (b) cut and polished specimens in room light and 254 nm UV. 

 
Figure 2. XRD pattern of Tb-doped LPS, YPS, GPS, and LaPS samples, with each individual refer-
ence pattern. 

Figure 3 shows the diffuse transmittance spectra of the Tb-doped LPS, YPS, GPS, and 
LaPS sample. From 400 to 800 all the samples have transmittance over 80% which indi-
cated good transparency of the polished samples presented in Figure 1b. The absorption 

Tb:LPS    COD 8100597

Tb:YPS    JCPDS 82-0732

10 20 30 40 50 60 70 80

Tb:LaPS   JCPDS 82-0729In
te

ns
ity

 (a
rb

. u
ni

t)

2θ (degree)

Tb:GPS    COD 9011106

Figure 2. XRD pattern of Tb-doped LPS, YPS, GPS, and LaPS samples, with each individual reference
pattern.

Figure 3 shows the diffuse transmittance spectra of the Tb-doped LPS, YPS, GPS, and
LaPS sample. From 400 to 800 all the samples have transmittance over 80% which indicated
good transparency of the polished samples presented in Figure 1b. The absorption band of
the Tb3+ 4f-4f is start from 240–350 nm. However, the Tb-doped GPS sample have more
complicated shape of the absorption band than the other Tb-doped pyrosilicate in this
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study. The explanation of this behavior is discussed with the additional results from the
later PL property.
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3.2. Photoluminescence Propterties

Figure 4 presents the PL excitation and emission contour graph of Tb-doped pyrosili-
cate samples with excitation and emission ranges of 250–400 and 300–700 nm, respectively.
All the samples have presented a similar emission characteristic of Tb3+ 4f-4f transitions.
The detail of each emission will discuss in the next result of scintillation spectra. The
highest emission intensity of all the samples is 540 nm due to 5D4 → 7F5 transition of Tb3+.
Despite the similarity in emission wavelength, the excitation characteristic of Tb-doped
GPS is different from the rest of Tb-doped pyrosilicate counterparts. The main excitation
wavelength of Tb-doped GPS is shifted from 270 nm in the other samples to 310 nm with a
significantly higher QY at 68.9% than the Tb-doped LPS, YPS, and LaPS at 29.7, 13.6, and
21.6%, respectively. The possible reasons for the shifting of major excitation in Tb-doped
GPS are effected by the intrinsic emission of GPS at 310 nm by Gd3+ 4f-4f transition which
observed in the study of undoped GPS crystal [67].
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Figure 5 exhibits the PL decay time profiles of each Tb-doped LPS, YPS, GPS, and
LaPS sample. In the initial part of the profile, every sample in this study presents a slow
rise in the signal intensity. This part of the profile is possibly influenced by the instrumental
response function which is represented by cyan lines in all the four sample profiles. The
fitting is done by excluding the influenced part by the IRF, and fitting results by a single
exponential function is also as presented in Figure 4 below the name of each sample. The PL
decay times of Tb-doped LPS, YPS, GPS, and LaPS samples are 2.62, 5.65, 5.29, and 3.04 ms,
respectively. The results are consistent with the previous study on Tb-doped scintillator
materials [68].
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3.3. Scintillation Properties

Figure 6 presents X-ray induced scintillation spectra of Tb-doped LPS, YPS, GPS,
and LaPS samples. All of the samples have the same spectral shape. Furthermore, the
scintillation wavelengths observed here are similar to the emission wavelength with the
results of PL emission. In addition, the scintillation from Tb3+ 4f-4f transitions including
380 (5D3 → 7F6), 420 (5D3 → 7F5), 440 (5D4 → 7F5), 480 (5D4 → 7F6), 540 (5D4 → 7F5,
strongest), 590 (5D4 → 7F4), and 620 nm (5D4 → 7F3) are founded in all sample. In terms of
spectral shapes, the scintillation spectra of Tb-doped pyrosilicate samples are comparable
to the other Tb-doped scintillator study. Because the intensity value (vertical axis) in this
measurement is qualitative, the comparison of scintillation light yield is discussed in the
pulse-height spectra results.
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Figure 7 illustrates the X-ray induced scintillation decay time profile of each Tb-doped
LPS, YPS, GPS, and LaPS sample. The decay time profile is approximated with a sum of two
exponential decay functions. The 1st decay constant of all samples is influenced by the IRF
which appears at the initial part of the profile as a very fast component. On the other hand,
the 2nd decay constant of the samples is ascribed to the scintillation from the Tb3+ 4f-4f
transitions. When comparing with the previous results of PL decay times, every sample has
shown a faster scintillation decay constant [69]. This phenomenon may be caused by the
wavelength sensitivity of this measurement from 160 to 650 nm. In PL, only the emission
at 540 nm is focused by using optical filters while the current measurements accumulate
all the emissions from 160 to 650 nm. The afterglow timing profiles of Tb-doped LPS, YPS,
GPS, and LaPS samples and Af 20 values are exhibited in Figure 8. In comparison with the
commercial scintillator on the market, Tb-doped pyrosilicate samples have relatively higher
afterglow levels than the CdWO4 (CWO) and Tl-doped CsI which have Af 20 around 100
and 268 ppm, respectively [70,71]. One of the main reasons for the Tb-doped pyrosilicate
sample’s high afterglow level is the slow scintillation decay time in the ms region.
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Figure 9 presents the pulse-height spectra of Tb-doped pyrosilicate samples, under
the 137Cs (662 keV) γ-ray irradiation, plotted with the spectrum of the BGO reference
sample. For the scintillation light yield, the calculation is done by taking into consideration
the different quantum efficiencies of the PMT on both scintillation wavelengths of Tb-
doped pyrosilicate (540 nm, 9%) and BGO reference (480 nm, 25%). It means, although
photoabsorption peak channels of Tb-doped YPS and reference BGO are close, after the
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correction of quantum efficiency of PMT, Tb-doped YPS sample will have the scintillation
light yield 2.77 time higher than the BGO reference. The calculated scintillation light yield
with an energy resolution of each sample and BGO reference are summarized in Table 1.
Among all of the Tb-doped pyrosilicate samples in this study, the Tb-doped GPS has
presented the highest scintillation light yield of 95,600 ph/MeV. The combination of the
Gd site in the host and the Tb3+ ions as luminescence center is one of the possible reasons
why Tb-doped GPS has higher scintillation light yield than the other sample. According
to PL emission map (Figure 3), only Tb-doped GPS shows the excitation wavelength of
310 nm unlike other samples having that of 270 nm. In our previous work of undoped
GPS, it showed an emission peak at 310 nm [67]. In Tb-doped GPS, the emitted photons of
310 nm from the host has been self-absorbed and then transferred to emission by 5D4→ 7F5
transitions of Tb3+ at 540 nm. however, the energy resolution is 30.3% considerably high
and not favorable for a scintillator. On the other hand, Tb-doped LaPS is also interesting
due to its better energy resolution of 16.8% and still had high scintillation light yield of
47,700 ph/MeV. For the next step, the improvement of the crystal quality is recommended
in future work such as changing the crystal growth method to a more delicate way such as
Czochralski-method to improve the energy resolution and the other properties.
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Figure 9. Pulse-height spectra of Tb-doped LPS, YPS, GPS, and LaPS samples, under the 137Cs
(662 keV) γ-ray. With the spectrum of the BGO reference sample.

Table 1. Absolute scintillation light yields and energy resolution of the Tb-doped pyrosilicate samples
under 662 keV γ-ray irradiation.

Sample Name Scintillation Light Yield (ph/MeV) Energy Resolution (%)

Tb-doped LPS 20,700 15.2
Tb-doped YPS 29,600 10.6
Tb-doped GPS 95,600 30.3
Tb-doped LaPS 47,700 16.8

BGO 8200 [60] 26.9

4. Conclusions

1.0% Tb-doped LPS, YPS, GPS, and LaPS single crystals are successfully grown by
the floating-zone technique. The single phase of each rare-earth pyrosilicate is validated
by powdered XRD analysis. PL properties of the samples are investigated including
multiple emissions characterized by the strongest emission at 540 nm of Tb3+ 4f-4f transi-
tions on PL emission contour graphs, and the PL decay times of the present samples are
2.62–5.65 ms. In scintillation properties, X-ray induced scintillation spectra of the samples
have presented similar emission peaks with PL. The scintillation decay times of the sam-
ples resulted in 1.35–3.21 ms. The Tb-doped YPS and GPS present a high afterglow level
(Af20) at around 3500–3800 ppm. Under 662 keV γ-ray irradiation by 137Cs, the Tb-doped
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pyrosilicate samples present high scintillation light yield, and especially Tb-doped GPS
shows 95,600 ph/MeV with the energy resolution of 30.3%. The Tb-doped LaPS exhibits
the second highest scintillation light yield in this study with 47,700 ph/MeV with an energy
resolution of 16.8%. To the presented results, Tb-doped GPS and LaPS are suitable candi-
dates for the novel scintillator. However, Tb-doped pyrosilicate materials have scintillation
decay time in the ms-range. Therefore, the possible applications are the ones that favor
brightness over the response time such as the scintillator screen for X-ray radiography. In
the future work of these materials, the Tb-doped concentration dependence and the other
method of crystal growth are recommended for the Tb-doped GPS and LaPS for improving
and better understanding properties of these compounds.
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