Suppression of Bottom Porosity in Fiber Laser Butt Welding of Stainless Steel
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Effect of Ultrasonic Vibration on Bottom Porosity
3.2. Effect of Welding Position on Bottom Porosity
3.3. Effect of Shielding Gas on Bottom Porosity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Chen, S.; Zhang, Y.; Chen, G.; Bi, Z. Mechanisms for improvement of weld appearance in autogenous fiber laser welding of thick stainless steels. Metals 2018, 8, 625. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Liu, H.; Huang, J.; Ye, Z.; Yang, J.; Chen, S. MIG-TIG double-sided arc welding of copper-stainless steel using different filler metals. J. Manuf. Process. 2020, 55, 208–219. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Zhang, G.; Bo, W.; Gong, S. An investigation on the effects of side assisting gas flow and metallic vapour jet on the stability of keyhole and molten pool during laser full-penetration welding. J. Phys. D Appl. Phys. 2011, 44, 135201. [Google Scholar] [CrossRef]
- Chen, D.; Zhan, X.; Liu, T.; Zhao, Y.; Qi, N.; Sun, L. Effect of porosity morphology and elements characteristics on mechanical property in T-joints during dual laser-beam bilateral synchronous welding of 2060/2099 Al-Li alloys. Opt. Laser Technol. 2021, 140, 107019. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Jiang, L.; Gao, M. Numerical study of keyhole-induced porosity suppression mechanism in laser welding with beam oscillation. Sci. Technol. Weld. Join. 2021, 26, 349–355. [Google Scholar] [CrossRef]
- Lin, R.; Wang, H.; Lu, F.; Solomon, J.; Carlson, B.E. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys. Int. J. Heat Mass Transf. 2017, 108, 244–256. [Google Scholar] [CrossRef]
- Xu, J.; Rong, Y.; Huang, Y.; Wang, P.; Wang, C. Keyhole-induced porosity formation during laser welding. J. Manuf. Process. 2018, 252, 720–727. [Google Scholar] [CrossRef]
- Meng, W.; Li, Z.; Lu, F.; Wu, Y.; Chen, J.; Katayama, S. Porosity formation mechanism and its prevention in laser lap welding for T-joints. J. Manuf. Process. 2014, 214, 1658–1664. [Google Scholar] [CrossRef]
- Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Tang, X.; Xu, L.; Lu, F.; Cui, H. Study of molten pool dynamics and porosity formation mechanism in full penetration fiber laser welding of Al-alloy. Int. J. Heat Mass Transf. 2020, 148, 119089. [Google Scholar] [CrossRef]
- Matsunawa, A.; Mizutani, M.; Katayama, S.; Seto, N. Porosity formation mechanism and its prevention in laser welding. Weld. Int. 2003, 17, 431–437. [Google Scholar] [CrossRef]
- Shen, X.; Zhao, S.; Teng, W.; He, W. Effects of pulse parameters on porosity rate and flow characteristics of molten pool in pulsed laser welding. J. Laser Appl. 2018, 30, 32405. [Google Scholar] [CrossRef]
- Zhou, L.T.; Wang, X.Y.; Wang, W.; Wang, S.Y. Effects of laser scanning welding process on porosity rate of aluminum alloy. Trans. China Weld. Inst. 2014, 35, 65–68. [Google Scholar]
- Cai, C.; Li, L.; Tao, W.; Chen, X. Effects of weaving laser on scanning laser-MAG hybrid welding characteristics of high-strength steel. Sci. Technol. Weld. Join. 2017, 22, 104–109. [Google Scholar] [CrossRef]
- Kim, J.S.; Watanabe, T.; Yoshida, Y. Ultrasonic vibration aided laser welding of Al alloys: Improvement of laser welding-quality. J. Laser Appl. 1995, 7, 38–46. [Google Scholar] [CrossRef]
- Lei, Z.; Bi, J.; Li, P.; Guo, T.; Zhao, Y.; Zhang, D. Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy. Opt. Laser Technol. 2018, 105, 15–22. [Google Scholar] [CrossRef]
- He, W.P.; Shen, X.F. Effects of welding position on welding quality in CO2 laser welding of 5A90 aluminum-lithium alloy. High Power Laser Part. Beams 2016, 28, 178–186. [Google Scholar]
- Miao, Y.G.; Chen, Y.B.; Li, L.Q.; Wu, L. Analysis of characteristic of vertical position laser welding for aluminum alloys. Trans. China Weld. Inst. 2007, 28, 57–60. [Google Scholar]
- He, W.P.; Shen, X.F. Effect of shielding gas porosity in CO2 vertical position laser welding of 5A90 aluminum-lithium alloy. High Power Laser Part. Beams 2016, 28, 14–20. [Google Scholar]
- Sun, J.; Nie, P.; Lu, F.; Huang, J.; Feng, K.; Li, Z.; Zhang, W. The characteristics and reduction of porosity in high-power laser welds of thick AISI 304 plate. Int. J. Adv. Manuf. Technol. 2017, 93, 3517–3530. [Google Scholar] [CrossRef]
- Grajczak, J.; Nowroth, C.; Nothdurft, S.; Hermsdorf, J.; Twiefel, J.; Wallaschek, J.; Kaierle, S. Influence of ultrasound on pore and crack formation in laser beam welding of nickel-base alloy round bars. Metals 2020, 10, 1299. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Tang, K.; Mao, C.; Hu, Y.; Chen, G. Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser. Opt. Laser Technol. 2018, 98, 97–105. [Google Scholar] [CrossRef]
Element | C | Cr | Mn | Ni | Si | P | S | Fe |
---|---|---|---|---|---|---|---|---|
(Wt.%) | 0.039 | 18.280 | 1.420 | 8.150 | 0.410 | 0.036 | 0.015 | Bal. |
Parameters | Value |
---|---|
Laser power (plaser) (W) | 2000 |
Welding speed (v) (m/min) | 1.2 |
Defocus (Δ) (mm) | +3 |
Ultrasonic frequency (kHz) | 20 |
Ultrasonic power (pultrasonic) (W) | 0, 250, 500, 750, 1000 |
Ultrasonic amplitude (μm) | 6 |
Welding position | Flat position, Vertical–down position, Vertical–up position, Horizontal position |
Shielding gas type | N2 |
Top shielding gas flow rate (qtop) (L/min) | 0, 15, 20, 25 |
Bottom shielding gas flow rate (qbottom) (L/min) | 0, 15, 20, 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, X.; Dai, J.; Zhang, M.; Zhang, Y. Suppression of Bottom Porosity in Fiber Laser Butt Welding of Stainless Steel. Photonics 2021, 8, 359. https://doi.org/10.3390/photonics8090359
Pang X, Dai J, Zhang M, Zhang Y. Suppression of Bottom Porosity in Fiber Laser Butt Welding of Stainless Steel. Photonics. 2021; 8(9):359. https://doi.org/10.3390/photonics8090359
Chicago/Turabian StylePang, Xiaobing, Jiahui Dai, Mingjun Zhang, and Yan Zhang. 2021. "Suppression of Bottom Porosity in Fiber Laser Butt Welding of Stainless Steel" Photonics 8, no. 9: 359. https://doi.org/10.3390/photonics8090359
APA StylePang, X., Dai, J., Zhang, M., & Zhang, Y. (2021). Suppression of Bottom Porosity in Fiber Laser Butt Welding of Stainless Steel. Photonics, 8(9), 359. https://doi.org/10.3390/photonics8090359