A Smartphone-Based Detection Method of Colloidal Gold Immunochromatographic Strip
Abstract
:1. Introduction
2. Methods
2.1. Detection Principle and Structure of GICS
2.2. Absorption Characteristics of Colloidal Gold
2.3. Environmental Compensation
2.4. The Procedure of Detection
2.5. Detection Algorithm
2.6. Other Influencing Factors
3. Materials
3.1. Background Detection Paper
3.2. Apparatus and Reagents
4. Results and Discussion
4.1. Performance of Green Channel
4.2. Performance of Luminance Compensation Method
4.3. Establishment of Calibration Curve
4.4. Evaluation of the Repeatability
4.5. Establishment of Calibration Curve
4.6. Stability in Different Smartphones
4.7. Standard Curve Fitting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drain, P.; Hyle, E.P.; Noubary, F.; Freedberg, K.A.; Wilson, D.; Bishai, W.R.; Rodriguez, W.; Bassett, I.V. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis. 2014, 14, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulo, I.; Skvar, M. Clinical Application of a New SARS-CoV-2 Antigen Detection Kit (Colloidal Gold) in the Detection of COVID-19. Diagnostics 2021, 11, 995. [Google Scholar] [CrossRef]
- Liau, J.; Goldberg, D.; Arif-Tiwari, H. Prostate Cancer Detection and Diagnosis: Role of Ultrasound with MRI Correlates. Curr. Radiol. Rep. 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Patra, C.R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P. Rmukhopadhyay, Fabrication of Gold Nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 2010, 62, 346–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Wolff, A. Rapid diagnostics for SARS-CoV-2 virus: Point-of-care testing and lessons learned during the pandemic. Bioanalysis 2021, 13, 1165–1167. [Google Scholar] [CrossRef]
- Pierce, M.C.; Weigum, S.E.; Jaslove, J.M.; Richards-Kortum, R.; Tkaczyk, T.S. Optical systems for point-of-care diagnostic instrumentation: Analysis of imaging performance and cost. Ann. Biomed. Eng. 2014, 42, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Isikman, S.O.; Mudanyali, O.; Greenbaum, A.; Ozcan, A. Optical imaging techniques for point-of-care diagnostics. Lab A Chip 2013, 13, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Myers, F.B.; Lee, L.P. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 2008, 8, 2015–2031. [Google Scholar] [CrossRef] [PubMed]
- Preechaburana, P.; Suska, A.; Filippini, D. Biosensing with cell phones. Trends Biotechnol. 2014, 32, 351–355. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016, 75, 273–284. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Gehlot, P.; Sidapra, K.; Edwards, A.D.; Reis, N.M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron. 2015, 70, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendran, V.K.; Bakthavathsalam, P.; Ali, B.M.J. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim. Acta 2014, 181, 1815–1821. [Google Scholar] [CrossRef]
- Xiao, W.; Huang, C.; Xu, F.; Yan, J.; Bian, H.; Fu, Q.; Xie, K.; Wang, L.; Tang, Y. A Simple and Compact Smartphone-Based Device for the Quantitative Readout of Colloidal Gold Lateral Flow Immunoassay Strips. Sens. Actuators B Chem. 2018, 266, 63–70. [Google Scholar] [CrossRef]
- Von Lode, P. Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 2005, 38, 591–606. [Google Scholar] [CrossRef]
- Lopez-Ruiz, N.; Curto, V.F.; Erenas, M.M.; Benito-Lopez, F.; Diamond, D.; Palma, A.J.; Capitan-Vallvey, L.F. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal. Chem. 2014, 86, 9554. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.L.; Gao, J.; Liao, J.C.; Wong, P.K. System Integration—A Major Step toward Lab on a Chip. J. Biol. Eng. 2011, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zou, M.; Chen, Y.; Xue, Q.; Zhang, F.; Li, B.; Wang, Y.; Qi, X.; Yang, Y. Gold immunochromatographic strips for enhanced detection of Avian influenza and Newcastle disease viruses. Anal. Chim. Acta 2013, 782, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, L.; Tong, B.; Zhang, Y.; Sheng, W.; Pan, M.; Wang, S. Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol. Biosens. Bioelectron. 2016, 85, 337–342. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217. [Google Scholar] [CrossRef]
- Long, N.N.; Kiem, C.D.; Doanh, S.C.; Nguyet, C.T.; Hang, P.T.; Thien, N.D.; Quynh, L.M. Synthesis and optical properties of colloidal gold nanoparticles. J. Phys. Conf. 2009, 187, 012026. [Google Scholar] [CrossRef]
- Zheng, C.; Ye, X.Y.; Xiao, X.Q. Nonlinear Absorption Properties of Spherical Gold Colloidal Nanoparticles. Adv. Mater. Res. 2012, 476–478, 923–927. [Google Scholar] [CrossRef]
- Jia, M.Y.; Wu, Q.S.; Li, H.; Zhang, Y.; Guan, Y.F.; Feng, L. The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine. Biosens. Bioelectron. 2015, 74, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
M Intensity (%) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|
Pictures |
Phone | Weak Light | Medium Light | Strong Light |
---|---|---|---|
VIVO | 0.9943 | 0.9953 | 0.9982 |
MI | 0.9953 | 0.9978 | 0.9981 |
Honor | 0.9954 | 0.9972 | 0.9952 |
NO. | 2 ng/mL | 20 ng/mL | 50 ng/mL |
---|---|---|---|
1 | 181.63 | 201.78 | 210.64 |
2 | 179.67 | 202.56 | 206.31 |
3 | 182.40 | 202.86 | 208.67 |
4 | 184.06 | 202.56 | 207.64 |
5 | 179.40 | 201.65 | 207.26 |
Mean | 181.43 (±2.63) | 202.02 (±0.84) | 208.10 (±2.54) |
RSD | 1.07% | 0.67% | 0.79% |
Illumination | 2 ng/mL | 20 ng/mL | 50 ng/mL |
---|---|---|---|
Weak light | 182.90 ± 2.55 | 200.91 ± 1.93 | 205.42 ± 2.27 |
Medium light | 186.78 ± 1.69 | 199.28 ± 0.96 | 206.58 ± 1.68 |
Strong light | 184.15 ± 1.05 | 195.02 ± 1.42 | 203.58 ± 0.79 |
Smartphone | 2 ng/mL | 20 ng/mL | 50 ng/mL |
---|---|---|---|
VIVO | 184.83 ± 1.86 | 197.62 ± 1.68 | 205.05 ± 1.34 |
MI 8 | 185.56 ± 1.65 | 198.04 ± 2.24 | 206.98 ± 1.26 |
HONOR | 185.97 ± 1.29 | 201.80 ± 1.53 | 206.02 ± 1.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Bai, L.; Xia, G.; Ma, L.; Wang, J.; Li, Z.; Cai, F. A Smartphone-Based Detection Method of Colloidal Gold Immunochromatographic Strip. Photonics 2021, 8, 576. https://doi.org/10.3390/photonics8120576
Jin S, Bai L, Xia G, Ma L, Wang J, Li Z, Cai F. A Smartphone-Based Detection Method of Colloidal Gold Immunochromatographic Strip. Photonics. 2021; 8(12):576. https://doi.org/10.3390/photonics8120576
Chicago/Turabian StyleJin, Shiqun, Lihao Bai, Guo Xia, Long Ma, Jiangtao Wang, Zhiming Li, and Fei Cai. 2021. "A Smartphone-Based Detection Method of Colloidal Gold Immunochromatographic Strip" Photonics 8, no. 12: 576. https://doi.org/10.3390/photonics8120576
APA StyleJin, S., Bai, L., Xia, G., Ma, L., Wang, J., Li, Z., & Cai, F. (2021). A Smartphone-Based Detection Method of Colloidal Gold Immunochromatographic Strip. Photonics, 8(12), 576. https://doi.org/10.3390/photonics8120576