Broadband Terahertz Photonic Integrated Circuit with Integrated Active Photonic Devices
Abstract
:1. Introduction
2. Waveguide Architecture
3. Fabrication and Measurement Setup
4. Waveguide Performance
4.1. Transmission Losses through Straight Sections
4.2. Bends
5. Transitions to Active Devices
6. Couplers
7. Frequency-Selective Filter Example
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rymanov, V.; Lu, P.; Dülme, S.; Stöhr, A. Lens-assisted quasi-optical THz transmitter employing antenna-integrated triple transit region photodiodes. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Peytavit, E.; Latzel, P.; Pavanello, F.; Ducournau, G.; Lampin, J. CW Source Based on Photomixing With Output Power Reaching 1.8 mW at 250 GHz. IEEE Electron Device Lett. 2013, 34, 1277–1279. [Google Scholar] [CrossRef]
- Al-Khalidi, A.; Alharbi, K.H.; Wang, J.; Morariu, R.; Wang, L.; Khalid, A.; Figueiredo, J.M.L.; Wasige, E. Resonant Tunneling Diode Terahertz Sources With up to 1 mW Output Power in the J-Band. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Frequency Multipliers (WR and D Series). Available online: https://www.vadiodes.com/en/frequency-multipliers (accessed on 26 January 2021).
- Lu, P.K.; Turan, D.; Jarrahi, M. High-sensitivity telecommunication-compatible photoconductive terahertz detection through carrier transit time reduction. Opt. Express 2020, 28, 26324–26335. [Google Scholar] [CrossRef] [PubMed]
- N5291A 900 Hz to 120 GHz PNA MM-Wave System. Available online: https://www.keysight.com/de/pdx-2817990-pn-N5291A/900-hz-to-120-ghz-pna-mm-wave-system (accessed on 26 January 2021).
- Lee, T.H.; Wong, S.S. CMOS RF integrated circuits at 5 GHz and beyond. Proc. IEEE 2000, 88, 1560–1571. [Google Scholar] [CrossRef] [Green Version]
- Daulay, O.; Botter, R.; Marpaung, D. On-chip programmable microwave photonic filter with an integrated optical carrier processor. OSA Contin. 2020, 3, 2166–2174. [Google Scholar] [CrossRef]
- Hossain, M.; Boppel, S.; Heinrich, W.; Krozer, V. Efficient active multiplier-based signal source for >300 GHz system applications. Electron. Lett. 2019, 55, 1220–1221. [Google Scholar] [CrossRef]
- Ranjkesh, N.; Amarloo, H.; Gigoyan, S.; Ghafarian, N.; Basha, M.A.; Safavi-Naeini, S. 1.1 THz U-Silicon-On-Glass (U-SOG) Waveguide: A Low-Loss Platform for THz High-Density Integrated Circuits. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 702–709. [Google Scholar] [CrossRef]
- Amarloo, H.; Ranjkesh, N.; Safavi-Naeini, S. Terahertz Silicon–BCB–Quartz Dielectric Waveguide: An Efficient Platform for Compact THz Systems. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 201–208. [Google Scholar] [CrossRef]
- Amarloo, H.; Safavi-Naeini, S. Terahertz Slot Dielectric Waveguide Implemented on the Silicon-BCB-Quartz Platform. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 310–317. [Google Scholar] [CrossRef]
- Crowe, T.W.; Foley, B.; Durant, S.; Hui, K.; Duan, Y.; Hesler, J.L. VNA frequency extenders to 1.1 THz. In Proceedings of the 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, Houston, TX, USA, 2–7 October 2011; p. 1. [Google Scholar] [CrossRef]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Han, H.; Park, H.; Cho, M.; Kim, J. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 2002, 80, 2634–2636. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H. A novel low-loss Terahertz waveguide: Polymer tube. Opt. Express 2010, 18, 3762–3767. [Google Scholar] [CrossRef] [PubMed]
- Campion, J.; Li, Y.; Zirath, H.; Oberhammer, J.; Hassona, A.; He, Z.S.; Beuerle, B.; Gomez-Torrent, A.; Shah, U.; Vecchiattini, S.; et al. Toward Industrial Exploitation of THz Frequencies: Integration of SiGe MMICs in Silicon-Micromachined Waveguide Systems. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 624–636. [Google Scholar] [CrossRef]
- Headland, D.; Withayachumnankul, W.; Yu, X.; Fujita, M.; Nagatsuma, T. Unclad Microphotonics for Terahertz Waveguides and Systems. J. Light. Technol. 2020, 38, 6853–6862. [Google Scholar] [CrossRef]
- Zhu, H.; Xue, Q.; Hui, J.; Pang, S.W. Design, Fabrication, and Measurement of the Low-Loss SOI-Based Dielectric Microstrip Line and its Components. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 696–705. [Google Scholar] [CrossRef]
- Ranjkesh, N.; Basha, M.; Taeb, A.; Safavi-Naeini, S. Silicon-on-Glass Dielectric Waveguide—Part II: For THz Applications. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 280–287. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, X.; Zang, X.; Cheng, Q.; Chen, L.; Zhu, Y. Terahertz integrated device: High-Q silicon dielectric resonators. Opt. Mater. Express 2018, 8, 50–58. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, G.; Yuan, S.; Chen, L.; Wu, X.; Zhang, X. Voltage-actuated thermally tunable on-chip terahertz filters based on a whispering gallery mode resonator. Opt. Lett. 2019, 44, 4670–4673. [Google Scholar] [CrossRef] [PubMed]
- Ranjkesh, N.; Gigoyan, S.; Amarloo, H.; Basha, M.; Safavi-Naeini, S. Broadband Single-Mode THz Suspended Silicon-On-Glass Waveguide. IEEE Microw. Wirel. Components Lett. 2018, 28, 185–187. [Google Scholar] [CrossRef]
- Akiki, E.; Verstuyft, M.; Ducournau, G.; Walter, B.; Mairiaux, E.; Faucher, M.; Lampin, J.; Vanwolleghem, M.; Kuyken, B. Low Loss Suspended Silicon Waveguide and Photonic Crystal for THz Regime. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019; p. 1. [Google Scholar] [CrossRef]
- Rivera-Lavado, A.; García-Muñoz, L.E.; Generalov, A.; Lioubtchenko, D.; Abdalmalak, K.A.; Llorente-Romano, S.; García-Lampérez, A.; Segovia-Vargas, D.; Räisänen, A.V. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves. J. Infrared Millim. Terahertz Waves 2017, 38, 33–46. [Google Scholar] [CrossRef]
- Rivera-Lavado, A.; García-Muñoz, L.E.; Lioubtchenko, D.; Preu, S.; Abdalmalak, K.A.; Santamaría-Botello, G.; Segovia-Vargas, D.; Räisänen, A.V. Planar Lens–Based Ultra-Wideband Dielectric Rod Waveguide Antenna for Tunable THz and Sub-THz Photomixer Sources. J. Infrared Millim. Terahertz Waves 2019, 40, 838–855. [Google Scholar] [CrossRef]
- Bingham, A.L.; Grischkowsky, D.R. Terahertz 2-D Photonic Crystal Waveguides. IEEE Microw. Wirel. Components Lett. 2008, 18, 428–430. [Google Scholar] [CrossRef]
- Amarloo, H.; Safavi-Naeini, S. Terahertz Line Defect Waveguide Based on Silicon-on-Glass Technology. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 433–439. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Fujita, M.; Nagatsuma, T. Integrated Silicon Photonic Crystals Toward Terahertz Communications. Adv. Opt. Mater. 2018, 6, 1800401. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Sugeta, M.; Yamagami, Y.; Fujita, M.; Nagatsuma, T. Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications. Appl. Phys. Express 2019, 12, 012005. [Google Scholar] [CrossRef]
- Gao, W.; Yu, X.; Fujita, M.; Nagatsuma, T.; Fumeaux, C.; Withayachumnankul, W. Effective-medium-cladded dielectric waveguides for terahertz waves. Opt. Express 2019, 27, 38721–38734. [Google Scholar] [CrossRef] [Green Version]
- Waveguide Band Designations. Available online: https://vadiodes.com/VDI/pdf/waveguidechart200908.pdf (accessed on 4 September 2020).
- Seifert, T.; Jaiswal, S.; Martens, U.; Hannegan, J.; Braun, L.; Maldonado, P.; Freimuth, F.; Kronenberg, A.; Henrizi, J.; Radu, I.; et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 2016, 10, 483–488. [Google Scholar] [CrossRef]
- Olvera, A.D.J.F.; Betancour, A.F.; de Dios, C.; Acedo, P.; Preu, S. Architecture and Component Characterization of a High-Resolution Free-Space Vector Network Analyzer for the Terahertz Range. In Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, 13–15 May 2019; pp. 257–260. [Google Scholar]
- Nandi, U.; Dutzi, K.; Deninger, A.; Lu, H.; Norman, J.; Gossard, A.C.; Vieweg, N.; Preu, S. ErAs:In(Al)GaAs photoconductor-based time domain system with 4.5 THz single shot bandwidth and emitted terahertz power of 164 μW. Opt. Lett. 2020, 45, 2812–2815. [Google Scholar] [CrossRef] [PubMed]
- Liebermeister, L.; Nellen, S.; Kohlhaas, R.; Breuer, S.; Schell, M.; Globisch, B. Ultra-fast, High-Bandwidth Coherent cw THz Spectrometer for Non-destructive Testing. J. Infrared Millim. Terahertz Waves 2019, 40, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Preu, S.; Terahertz Photonic Integrated Circuit. German Patent Request DE 10 2019 104 982 A1 (2019). Available online: https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE102019104982A1 (accessed on 2 November 2021).
- Amarloo, H.; Safavi-Naeini, S. Slot plasmonic waveguide based on doped-GaAs for terahertz deep-subwavelength applications. J. Opt. Soc. Am. A 2015, 32, 2189–2194. [Google Scholar] [CrossRef]
- Marcatili, E.A.J. Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Tech. J. 1969, 48, 2071–2102. [Google Scholar] [CrossRef]
- Olvera, A.F.; Lu, H.; Gossard, A.C.; Preu, S. Continuous-wave 1550 nm operated terahertz system using ErAs:In(Al)GaAs photo-conductors with 52 dB dynamic range at 1 THz. Opt. Express 2017, 25, 29492–29500. [Google Scholar] [CrossRef] [Green Version]
- Jansen, C.; Wietzke, S.; Wang, H.; Koch, M.; Zhao, G. Terahertz spectroscopy on adhesive bonds. Polym. Test. 2011, 30, 150–154. [Google Scholar] [CrossRef]
- Yeh, C.; Shimabukuro, F.I. Propagation Characteristics of Guide. In The Essence of Dielectric Waveguides; Springer: Boston, MA, USA, 2008; pp. 55–98. [Google Scholar] [CrossRef]
- Ramaswami, R.; Sivarajan, K.; Sasaki, G. Optical Networks: A Practical Perspective, 3rd ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2009. [Google Scholar]
- Fernandez Olvera, A.D.J.; Nandi, U.; Norman, J.; Gossard, A.C.; Roskos, H.; Preu, S. Dispersive properties of self-complementary log-periodic antennas in pulsed THz systems. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar] [CrossRef] [Green Version]
- Aller, M.M.; Preu, S. Quasi-Analytical Description of a Double Slit Planar Dielectric Waveguide as Broadband Dispersion Compensating Element. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Colman, P.; Combrié, S.; Lehoucq, G.; Rossi, A.D. Control of dispersion in photonic crystal waveguides using group symmetry theory. Opt. Express 2012, 20, 13108–13114. [Google Scholar] [CrossRef] [Green Version]
- Heiblum, M.; Harris, J. Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 1975, 11, 75–83. [Google Scholar] [CrossRef]
- Marcatili, E.A.J. Bends in Optical Dielectric Guides. Bell Syst. Tech. J. 1969, 48, 2103–2132. [Google Scholar] [CrossRef]
- Saijonmaa, J.; Yevick, D. Beam-propagation analysis of loss in bent optical waveguides and fibers. J. Opt. Soc. Am. 1983, 73, 1785–1791. [Google Scholar] [CrossRef]
- Sheehan, R.N.; Horne, S.; Peters, F.H. The design of low-loss curved waveguides. Opt. Quantum Electron. 2008, 40, 1211–1218. [Google Scholar] [CrossRef]
- Smit, M.K.; Pennings, E.C.; Blok, H. Normalized approach to the design of low-loss optical waveguide bends. J. Light. Technol. 1993, 11, 1737–1742. [Google Scholar] [CrossRef]
- Navarro-Cía, M.; Wu, J.; Liu, H.; Mitrofanov, O. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides. Sci. Rep. 2016, 6, 38926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Lavado, A.; Preu, S.; García-Muñoz, L.E.; Generalov, A.; Montero-de-Paz, J.; Döhler, G.; Lioubtchenko, D.; Méndez-Aller, M.; Sedlmeir, F.; Schneidereit, M.; et al. Dielectric Rod Waveguide Antenna as THz Emitter for Photomixing Devices. IEEE Trans. Antennas Propag. 2015, 63, 882–890. [Google Scholar] [CrossRef]
- Rumsey, V.H. 3-PLANE-SHEET ANTENNAS. In Frequency Independent Antennas; Rumsey, V.H., Ed.; Academic Press: New York, NY, USA, 1966; pp. 23–37. [Google Scholar] [CrossRef]
- Fernandez Olvera, A.D.J.; Roggenbuck, A.; Dutzi, K.; Vieweg, N.; Lu, H.; Gossard, A.C.; Preu, S. International System of Units (SI) Traceable Noise-Equivalent Power and Responsivity Characterization of Continuous Wave ErAs:InGaAs Photoconductive Terahertz Detectors. Photonics 2019, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.F.; Mukherjee, A.K.; Kumar, R.; Preu, S. Vivaldi End-Fire Antenna for THz Photomixers. J. Infrared Millim. Terahertz Waves 2020, 41, 728–739. [Google Scholar] [CrossRef] [Green Version]
- Schaubert, D.; Kollberg, E.; Korzeniowski, T.; Thungren, T.; Johansson, J.; Yngvesson, K. Endfire tapered slot antennas on dielectric substrates. IEEE Trans. Antennas Propag. 1985, 33, 1392–1400. [Google Scholar] [CrossRef]
- Greenberg, M.C.; Virga, K.L.; Hammond, C.L. Performance characteristics of the dual exponentially tapered slot antenna (DETSA) for wireless communications applications. IEEE Trans. Veh. Technol. 2003, 52, 305–312. [Google Scholar] [CrossRef]
- Vogt, D.W.; Leonhardt, R. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator. APL Photonics 2018, 3, 051702. [Google Scholar] [CrossRef] [Green Version]
- Monifi, F.; Friedlein, J.; Ozdemir, Ş.K.; Yang, L. A Robust and Tunable Add–Drop Filter Using Whispering Gallery Mode Microtoroid Resonator. J. Light. Technol. 2012, 30, 3306–3315. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.; Ackert, J.; Yevick, D.; Chrostowski, L.; Jessop, P.E. Ring Resonator Wavelength Division Multiplexing Interleaver. J. Light. Technol. 2011, 29, 2102–2108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, A.K.; Xiang, M.; Preu, S. Broadband Terahertz Photonic Integrated Circuit with Integrated Active Photonic Devices. Photonics 2021, 8, 492. https://doi.org/10.3390/photonics8110492
Mukherjee AK, Xiang M, Preu S. Broadband Terahertz Photonic Integrated Circuit with Integrated Active Photonic Devices. Photonics. 2021; 8(11):492. https://doi.org/10.3390/photonics8110492
Chicago/Turabian StyleMukherjee, Amlan Kusum, Mingjun Xiang, and Sascha Preu. 2021. "Broadband Terahertz Photonic Integrated Circuit with Integrated Active Photonic Devices" Photonics 8, no. 11: 492. https://doi.org/10.3390/photonics8110492
APA StyleMukherjee, A. K., Xiang, M., & Preu, S. (2021). Broadband Terahertz Photonic Integrated Circuit with Integrated Active Photonic Devices. Photonics, 8(11), 492. https://doi.org/10.3390/photonics8110492