Interferometric Technique for the Spectral Characterization of High Frequency Current-Modulated Mid-Infrared Semiconductor Lasers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Non-Linear Regression
2.2.1. Spectral Characterization
2.2.2. Error Estimation
2.3. Direct Evaluation of Fringes
2.3.1. Spectral Characterization
2.3.2. Error Estimation
3. Results
4. Discussion
4.1. Advantages and Disadvantages of Both Methods
4.2. Explanatory Approach
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Besson, J.-P.; Schilt, S.; Thévenaz, L. Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 60, 3449–3456. [Google Scholar] [CrossRef] [PubMed]
- Demtröder, W. Laserspektroskopie: Grundlagen und Techniken; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Meyer, J.R.; Bewley, W.W.; Canedy, C.L.; Kim, C.S.; Kim, M.K.C.D.; Merritt, C.D.; Vurgaftman, I. The Interband Cascade Laser. Photonics 2020, 7, 75. [Google Scholar] [CrossRef]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Available online: https://www.bristol-inst.com/bristol-instruments-products/wavelength-meters-scientific (accessed on 14 August 2021).
- Bristol Instruments, Inc. Optical Wavelength Meter 828 Series Datasheet. 2020. Available online: https://www.bristol-inst.com/wp-content/uploads/2020/01/Bristol-828-Series-Optical-Wavelength-Meter-Specifications.pdf (accessed on 22 September 2021).
- Veracious Statistics Research. Global Laser Wavelength Meters Research Report 2021; Professional Edition; Veracious Statistics Research: New Delhi, India, 2021; Available online: https://vstatisticsresearch.com/global-laser-wavelength-meters-market (accessed on 22 September 2021).
- Du, Z.; Luo, G.; An, Y.; Li, J. Dynamic spectral characteristics measurement of DFB interband cascade laser under injection current tuning. Appl. Phys. Lett. 2016, 109, 011903. [Google Scholar] [CrossRef]
- Schuldt, T.; Kraus, H.-J.; Weise, D.; Braxmaier, C.; Peters, A.; Johann, U. A heterodyne interferometer for high resolution translation and tilt measurement as optical readout for the LISA inertial sensor. In Proceedings of the International Conference on Space Optics 2006—CSO 2006, Noordwijk, The Netherlands, 27–30 June 2006. [Google Scholar] [CrossRef] [Green Version]
- Olyaee, S.; Yoon, T.; Hamedi, S. Jones matrix analysis of frequency mixing error in three-longitudinal-mode laser heterodyne interferometer. IET Optoelectron. 2009, 3, 215–224. [Google Scholar] [CrossRef]
- Dändliker, R.; Thalmann, R.; Prongué, D. Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett. 1988, 13, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Seeley, R.; Froggatt, M.E. High Precision Wavelength Measurement and Control of a Tunable Laser. U.S. Patent 10,502,632 B2, 10 December 2019. [Google Scholar]
- Available online: https://nlir.com/2-0-5-0-%c2%b5m-spectrometer (accessed on 14 August 2021).
- Steel, W.H. Interferometry; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Press, W.; Teukolsky, S.A. Savitzky-Golay Smoothing Filters. Comput. Phys. 1990, 4, 669. [Google Scholar] [CrossRef]
- Peatross, J.; Ware, M.J. Physics of Light and Optics (Black & White); Brigham Young University, Department of Physics: Provo, UT, USA, 2015. [Google Scholar]
- Kull, H. Back Matter. In Laserphysik; Oldenbourg Wissenschaftsverlag: Munich, Germany, 2011. [Google Scholar] [CrossRef]
- Giancoli, D.C. Physics for Scientists & Engineers with Modern Physics; Pearson: London, UK, 2013. [Google Scholar]
- Stewart, G. Laser and Fiber Optic Gas Absorption Spectroscopy; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- McGregor, C.; Nimmo, J.; Stothers, W. Fundamentals of University Mathematics; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef] [Green Version]
- Booth, G.; Brodie, D. As Physics Study Guide; HarperCollins Publishers Limited: London, UK, 2008. [Google Scholar]
- Zeller, W.; Naehle, L.; Fuchs, P.; Gerschuetz, F.; Hildebrandt, L.; Koeth, J. DFB Lasers Between 760 nm and 16 µm for Sensing Applications. Sensors 2010, 10, 2492–2510. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, D.; Ribeiro, J.; Flores, D.; Ferreira, J.; Frazão, O.; Santos, J.L.; Baptista, J.M. Gas sensing using wavelength modulation spectroscopy. In Proceedings of the Second International Conference on Applications of Optics and Photonics, Aveiro, Portugal, 26–30 May 2014. [Google Scholar]
Method | Measuring Range | Wavelength Error |
---|---|---|
Non-linear Regression method | 30–45 mA | Δλ = ±0.12 nm |
Direct evaluation of fringes | 31–45 mA | Δλ = ±0.030 nm |
Modulation Frequency (kHz) | Wavelength Range (nm) | Δλ (nm) | Δλ (Relative to cw) |
---|---|---|---|
cw | 3327.52–3330.57 | 3.05 | 1.00 |
0.1 | 3328.48–3330.27 | 1.79 | 0.59 |
0.4 | 3328.55–3330.01 | 1.46 | 0.48 |
1 | 3328.60–3329.95 | 1.35 | 0.44 |
3 | 3328.67–3329.84 | 1.17 | 0.38 |
6 | 3328.73–3329.74 | 1.01 | 0.33 |
12 | 3328.80–3329.63 | 0.83 | 0.27 |
20 | 3328.87–3329.53 | 0.66 | 0.22 |
30 | 3328.88–3329.42 | 0.54 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahr, M.-S.; Wolff, M. Interferometric Technique for the Spectral Characterization of High Frequency Current-Modulated Mid-Infrared Semiconductor Lasers. Photonics 2021, 8, 443. https://doi.org/10.3390/photonics8100443
Bahr M-S, Wolff M. Interferometric Technique for the Spectral Characterization of High Frequency Current-Modulated Mid-Infrared Semiconductor Lasers. Photonics. 2021; 8(10):443. https://doi.org/10.3390/photonics8100443
Chicago/Turabian StyleBahr, Marc-Simon, and Marcus Wolff. 2021. "Interferometric Technique for the Spectral Characterization of High Frequency Current-Modulated Mid-Infrared Semiconductor Lasers" Photonics 8, no. 10: 443. https://doi.org/10.3390/photonics8100443
APA StyleBahr, M. -S., & Wolff, M. (2021). Interferometric Technique for the Spectral Characterization of High Frequency Current-Modulated Mid-Infrared Semiconductor Lasers. Photonics, 8(10), 443. https://doi.org/10.3390/photonics8100443