# One-Way Zero Reflection in an Insulator-Metal-Insulator Structure Using the Transfer Matrix Method

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Simulation

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett.
**1998**, 80, 5243–5246. [Google Scholar] [CrossRef][Green Version] - Longhi, S.; Della Valle, G. Photonic Realization of PT-Symmetric Quantum Field Theories. Phys. Rev. A
**2012**, 85, 012112. [Google Scholar] [CrossRef] - Bender, C.M. Making Sense of Non-Hermitian Hamiltonians. Rep. Prog. Phys.
**2007**, 70, 947–1018. [Google Scholar] [CrossRef][Green Version] - Musslimani, Z.H.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N. Optical Solitons in PT Periodic Potentials. Phys. Rev. Lett.
**2008**, 100, 030402. [Google Scholar] [CrossRef] [PubMed] - Guo, A.; Salamo, G.J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G.A.; Christodoulides, D.N. Observation of PT-Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett.
**2009**, 103, 093902. [Google Scholar] [CrossRef] [PubMed][Green Version] - Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of Parity-Time Symmetry in Optics. Nat. Phys.
**2010**, 6, 192–195. [Google Scholar] [CrossRef][Green Version] - Miri, M.-A.; LiKamWa, P.; Christodoulides, D.N. Large Area Single-Mode Parity–Time-Symmetric Laser Amplifiers. Opt. Lett.
**2012**, 37, 764. [Google Scholar] [CrossRef][Green Version] - Lin, Z.; Ramezani, H.; Eichelkraut, T.; Kottos, T.; Cao, H.; Christodoulides, D.N. Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures. Phys. Rev. Lett.
**2011**, 106, 213901. [Google Scholar] [CrossRef][Green Version] - Liertzer, M.; Ge, L.; Cerjan, A.; Stone, A.D.; Türeci, H.E.; Rotter, S. Pump-Induced Exceptional Points in Lasers. Phys. Rev. Lett.
**2012**, 108, 173901. [Google Scholar] [CrossRef][Green Version] - Feng, L.; Xu, Y.L.; Fegadolli, W.S.; Lu, M.H.; Oliveira, J.E.B.; Almeida, V.R.; Chen, Y.F.; Scherer, A. Experimental Demonstration of a Unidirectional Reflectionless Parity-Time Metamaterial at Optical Frequencies. Nat. Mater.
**2013**, 12, 108–113. [Google Scholar] [CrossRef] - Brandstetter, M.; Liertzer, M.; Deutsch, C.; Klang, P.; Schöberl, J.; Türeci, H.E.; Strasser, G.; Unterrainer, K.; Rotter, S. Reversing the Pump Dependence of a Laser at an Exceptional Point. Nat. Commun.
**2014**, 5, 4034. [Google Scholar] [CrossRef] [PubMed][Green Version] - Feng, L.; Wong, Z.J.; Ma, R.M.; Wang, Y.; Zhang, X. Single-Mode Laser by Parity-Time Symmetry Breaking. Science
**2014**, 346, 972–975. [Google Scholar] [CrossRef] [PubMed] - Hodaei, H.; Miri, M.A.; Hassan, A.U.; Hayenga, W.E.; Heinrich, M.; Christodoulides, D.N.; Khajavikhan, M. Parity-Time-Symmetric Coupled Microring Lasers Operating around an Exceptional Point. Opt. Lett.
**2015**, 40, 4955. [Google Scholar] [CrossRef] [PubMed] - Miri, M.-A.; Alú, A. Exceptional points in optics and photonics. Science
**2019**, 363, eaar7709. [Google Scholar] [CrossRef][Green Version] - Wiersig, J. Review of exceptional point-based sensors. Photonics Res.
**2020**, 8, 1457–1467. [Google Scholar] [CrossRef] - Shen, Y.; Deng, X.H.; Chen, L. Unidirectional Invisibility in a Two-Layer Non-PT-Symmetric Slab. Opt. Express
**2014**, 22, 19440. [Google Scholar] [CrossRef] - Feng, L.; Zhu, X.; Yang, S.; Zhu, H.; Zhang, P.; Yin, X.; Wang, Y.; Zhang, X. Demonstration of a Large-Scale Optical Exceptional Point Structure. Opt. Express
**2014**, 22, 1760. [Google Scholar] [CrossRef] - Huang, Y.; Veronis, G.; Min, C. Unidirectional Reflectionless Propagation in Plasmonic Waveguide-Cavity Systems at Exceptional Points. Opt. Express
**2015**, 23, 29882. [Google Scholar] [CrossRef] - Na, J.; Noh, H. Investigation of a Broadband Coherent Perfect Absorber in a Multi-Layer Structure by Using the Transfer Matrix Method. J. Korean Phys. Soc.
**2018**, 72, 66–70. [Google Scholar] [CrossRef] - Ducourtieux, S.; Podolskiy, V.A.; Grésillon, S.; Buil, S.; Berini, B.; Gadenne, P.; Boccara, A.C.; Rivoal, J.C.; Bragg, W.D.; Banerjee, K.; et al. Near-Field Optical Studies of Semicontinuous Metal Films. Phys. Rev. B
**2001**, 64, 1654031–16540314. [Google Scholar] [CrossRef][Green Version] - Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B
**1972**, 6, 4370–4379. [Google Scholar] [CrossRef] - Andreasen, J.; Vanneste, C.; Ge, L.; Cao, H. Effects of Spatially Nonuniform Gain on Lasing Modes in Weakly Scattering Random Systems. Phys. Rev. A
**2010**, 81, 043818. [Google Scholar] [CrossRef][Green Version] - González-Vila, Á.; Debliquy, M.; Lahem, D.; Zhang, C.; Mégret, P.; Caucheteur, C. Molecularly imprinted electropolymerization on a metal-coated optical fiber for gas sensing application. Sens. Actuators B Chem.
**2017**, 244, 1145–1151. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Schematic of simulated structure. The three layers seen here are SiO${}_{2}$-Au-SiO${}_{2}$. We fixed the thickness of Au as 10 nm, and ${d}_{1}$ and ${d}_{2}$ are varied to achieve one-way zero reflection. Incident light coming from the left (right) is denoted as forwardly (backwardly) incident light. (

**b**) dispersion curve of Au. The data points marked with the black filled circles (•) and the blue open circles (∘) are from Ref. [21]. Solid and dashed curves are lines of best fit. The black curves represents the real part of $\epsilon $, the blue curves represents the imaginary part of $\epsilon $.

**Figure 2.**The false color image showing the phases of ${r}_{f}$(a) and ${r}_{b}$(b). (

**a**) ${r}_{f}=0$ at ${\mathbf{P}}_{1}$ = (47 nm, 32 nm) and ${\mathbf{P}}_{2}$ = (71 nm, 60 nm) because a phase change of $2\pi $ occurs around these points. (

**b**) ${r}_{b}=0$ at ${\mathbf{P}}_{1}^{\mathrm{T}}$ = (32 nm, 47 nm) and ${\mathbf{P}}_{2}^{\mathrm{T}}$ = (60 nm, 71 nm), where the first and second numbers correspond to ${d}_{1}$ and ${d}_{2}$, respectively.

**Figure 3.**Reflectance and transmittance for a structure with ${d}_{1}=32$ nm and ${d}_{2}=47$ nm (

**a**) Reflectance of forwardly incident light (blue solid curve) and backwardly incident light (black dashed curve) as a function of wavelength. Only reflectance of forwardly incident light becomes zero at $\lambda =$ 560 nm. (

**b**) Transmittance of forwardly incident light (blue solid curve) and backwardly incident light (black dashed curve) as a function of wavelength. The transmittance is the same for both forwardly and backwardly incident light.

**Figure 4.**Reflectance and transmittance for a structure with ${d}_{1}=60$ nm and ${d}_{2}=71$ nm (

**a**) Reflectance of forwardly incident light (blue solid curve) and backwardly incident light (black dashed curve) as a function of wavelength. Only the reflectance of forwardly incident light becomes zero at $\lambda =$ 560 nm. (

**b**) Transmittance of forwardly incident light (blue solid curve) and backwardly incident light (black dashed curve) as a function of wavelength. The transmittance is the same for both forwardly and backwardly incident light.

**Figure 5.**Absorption spectra of forwardly incident light (blue solid curve) and backwardly incident light (black dashed curve) as a function of wavelength for a structure with ${d}_{1}=47$ nm and ${d}_{2}=32$ nm (

**a**), ${d}_{1}=60$ nm and ${d}_{2}=71$ nm (

**b**).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Noh, H.; Choi, J.-M. One-Way Zero Reflection in an Insulator-Metal-Insulator Structure Using the Transfer Matrix Method. *Photonics* **2021**, *8*, 8.
https://doi.org/10.3390/photonics8010008

**AMA Style**

Noh H, Choi J-M. One-Way Zero Reflection in an Insulator-Metal-Insulator Structure Using the Transfer Matrix Method. *Photonics*. 2021; 8(1):8.
https://doi.org/10.3390/photonics8010008

**Chicago/Turabian Style**

Noh, Heeso, and Jai-Min Choi. 2021. "One-Way Zero Reflection in an Insulator-Metal-Insulator Structure Using the Transfer Matrix Method" *Photonics* 8, no. 1: 8.
https://doi.org/10.3390/photonics8010008