InP-Components for 100 GBaud Optical Data Center Communication
Abstract
:1. Introduction
2. Discrete InP-Components
2.1. Electro-Absorption EML
2.2. Vertically Illuminated Photodiode
3. System Evaluation
3.1. Experimental Setup
3.2. System Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ogiso, Y.; Hashizume, Y.; Tanobe, H.; Nunoya, N.; Ida, M.; Miyamoto, Y.; Ishikawa, M.; Ozaki, J.; Ueda, Y.; Wakita, H.; et al. 80-GHz Bandwidth and 1.5-V Vπ InP-Based IQ Modulator. J. Light. Technol. 2019, 38, 249–255. [Google Scholar] [CrossRef]
- Sun, S.; He, M.; Xu, M.; Zhang, X.; Ruan, Z.; Zhou, L.; Liu, L.; Liu, L.; Yu, S.; Cai, X. High-Speed Modulator with Integrated Termination Resistor Based on Hybrid Silicon and Lithium Niobate Platform. J. Light. Technol. 2020, 1. [Google Scholar] [CrossRef]
- Runge, P.; Zhou, G.; Ganzer, F.; Mutschall, S.; Seeger, A. Waveguide integrated InP-based photodetector for 100 Gbaud applications operating at wavelengths of 1310 nm and 1550 nm. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar]
- Kanazawa, S.; Yamazaki, H.; Nakanishi, Y.; Fujisawa, T.; Takahata, K.; Ueda, Y.; Kobayashi, W.; Muramoto, Y.; Ishii, H.; Sanjoh, H. Transmission of 214-Gbit/s 4-PAM signal using an ultra-broadband lumped-electrode EADFB laser module. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–22 March 2016; pp. 1–3. [Google Scholar]
- Yamazaki, H.; Nagatani, M.; Wakita, H.; Nakamura, M.; Kanazawa, S.; Ida, M.; Hashimoto, T.; Nosaka, H.; Miyamoto, Y. 160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer. IEEE Photonics Technol. Lett. 2018, 30, 1749–1751. [Google Scholar] [CrossRef]
- Chang, F. “Source Photonics” OIDA Technology Showcase on Fiber Optics and Communications. 2 December 2020. Available online: https://www.osa.org/en-us/meetings/industry_events/oida_technology_showcase_2020_december/participating_companies/source_photonics/ (accessed on 9 January 2021).
- Drenski, T.; Rasmussen, J.C. ADC&DAC—Technology Trends and Steps to Overcome Current Limitations. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Estaran, J.M.; Mardoyan, H.; Jorge, F.; Ozolins, O.; Udalcovs, A.; Konczykowska, A.; Riet, M.; Duval, B.; Nodjiadjim, V.; Dupuy, J.-Y.; et al. 140/180/204-Gbaud OOK Transceiver for Inter- and Intra-Data Center Connectivity. J. Light. Technol. 2018, 37, 178–187. [Google Scholar] [CrossRef]
- Heni, W.; Baeuerle, B.; Mardoyan, H.; Jorge, F.; Estaran, J.M.; Konczykowska, A.; Riet, M.; Duval, B.; Nodjiadjim, V.; Goix, M.; et al. Ultra-High-Speed 2:1 Digital Selector and Plasmonic Modulator IM/DD Transmitter Operating at 222 GBaud for Intra-Datacenter Applications. J. Light. Technol. 2020, 38, 2734–2739. [Google Scholar] [CrossRef]
- Ledentsov, N.; Chorchos, Ł.; Shchukin, V.; Kalosha, V.; Turkiewicz, J.P. Development of VCSELs and VCSEL-based Links for Data Communication beyond 50 Gb/s. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Kuchta, D.M.; Huynh, T.N.; Doany, F.E.; Schares, L.; Baks, C.W.; Neumeyr, C.; Daly, A.; Kogel, B.; Rosskopf, J.; Ortsiefer, M. Error-Free 56 Gb/s NRZ Modulation of a 1530-nm VCSEL Link. J. Light. Technol. 2016, 34, 3275–3282. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.; Zhang, Z.; Zhao, P.; Zang, D.; Zhu, N.; Lu, Y. Performance Enhancement of 112 Gb/s PAM-4 Amplifier-free 40 km Transmission with record sensitivity Using O-band 25 G-class Directly Modulated Laser. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Ozolins, O.; Pang, X.; Olmedo, M.I.; Kakkar, A.; Udalcovs, A.; Gaiarin, S.; Navarro, J.R.; Engenhardt, K.M.; Asyngier, T.; Schatz, R.; et al. 100 GHz Externally Modulated Laser for Optical Interconnects. J. Light. Technol. 2017, 35, 1174–1179. [Google Scholar] [CrossRef] [Green Version]
- Troppenz, U.; Bornholdt, C.; Kreissl, J.; Rehbein, W.; Sartorius, B.; Schell, M.; Letal, G.; Woods, I. 1.3 µm Passive Feedback Laser for 28 Gb/s and 40 Gb/s transmission over uncompensated SSMF links. In Proceedings of the 2009 35th European Conference on Optical Communication, Vienna, Austria, 20–24 September 2009; pp. 1–2. [Google Scholar]
- Yamaoka, S.; Diamantopoulos, N.-P.; Nishi, H.; Nakao, R.; Fujü, T.; Takeda, K.; Hiraki, T.; Kanazawa, S.; Tanobe, H.; Kakitsuka, T.; et al. 239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019; pp. 1–4. [Google Scholar]
- Benedikovic, D.; Virot, L.; Aubin, G.; Hartmann, J.M.; Amar, F.; Szelag, B.; Le Roux, X.; Alonso-Ramos, C.; Crozat, P.; Cassan, E.; et al. Silicon-germanium pin photodiodes with double heterojunction: High-speed operation at 10 Gbps and beyond. In Proceedings of the 2020 European Conference on Integrated Optics, Paris, France, 23–25 June 2020. [Google Scholar]
- Ito, H.; Kodama, S.; Muramoto, Y.; Furuta, T.; Nagatsuma, T.; Ishibashi, T. High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 709–727. [Google Scholar] [CrossRef]
- Li, Q.; Li, K.; Fu, Y.; Xie, X.; Yang, Z.; Beling, A.; Campbell, J.C. High-Power Flip-Chip Bonded Photodiode With 110 GHz Bandwidth. J. Light. Technol. 2016, 34, 2139–2144. [Google Scholar] [CrossRef]
- Schell, M. InP Solutions for Intra-Datacenter Connects. In Proceedings of the Market Focus European Conference on Optical Communication, Rome, Italy, 24–26 September 2018. [Google Scholar]
- Nassem; Chang, H.S.; Chao, R.L.; Huang, J.J.S.; Jan, Y.H.; Chen, H.S.; Ni, C.J.; Chou, E.; Shi, J.W. Uni-Traveling Carrier Photodiodes with Type-II GaAs0.5Sb0.5ZIn0.53Ga0.47As Hybrid Absorbers Integrated with Substrate Lens in 400 Gbit/Sec DR-4 System. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Choi, J.H.; Gruner, M.; Bach, H.-G.; Theurer, M.A.D.; Troppenz, U.; Möhrle, M.; Schell, M. Ultra-Low Power SiGe Driver-IC for high-speed Electroabsorption Modulated DFB Lasers. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Runge, P.; Beckerwerth, T.; Troppenz, U.; Gruner, M.; Boerma, H.; Möhrle, M.; Schell, M. InP-Components for 100 GBaud Optical Data Center Communication. Photonics 2021, 8, 18. https://doi.org/10.3390/photonics8010018
Runge P, Beckerwerth T, Troppenz U, Gruner M, Boerma H, Möhrle M, Schell M. InP-Components for 100 GBaud Optical Data Center Communication. Photonics. 2021; 8(1):18. https://doi.org/10.3390/photonics8010018
Chicago/Turabian StyleRunge, Patrick, Tobias Beckerwerth, Ute Troppenz, Marko Gruner, Hendrik Boerma, Martin Möhrle, and Martin Schell. 2021. "InP-Components for 100 GBaud Optical Data Center Communication" Photonics 8, no. 1: 18. https://doi.org/10.3390/photonics8010018
APA StyleRunge, P., Beckerwerth, T., Troppenz, U., Gruner, M., Boerma, H., Möhrle, M., & Schell, M. (2021). InP-Components for 100 GBaud Optical Data Center Communication. Photonics, 8(1), 18. https://doi.org/10.3390/photonics8010018