# Propagation of Cylindrical Vector Laser Beams in Turbid Tissue-Like Scattering Media

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Online GPU-Accelerated Monte Carlo Modeling of Photon Migration in Scattering Media

## 3. Results and Discussion

## 4. Summary and Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Tuchin, V. (Ed.) Handbook of Optical Biomedical Diagnostics; SPIE Press: Washington, DC, USA, 2002; Volume PM107. [Google Scholar]
- Evers, D.; Hendriks, B.; Lucassen, G.; Ruers, T. Optical spectroscopy: Current advances and future applications in cancer diagnostics and therapy. Future Oncol.
**2012**, 8, 307–320. [Google Scholar] [CrossRef] [PubMed] - Alfano, R.; Tata, D.; Cordero, J.; Tomashefsky, P.; Longo, F.; Alfano, M. Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J. Quantum Electron.
**1984**, 20, 1507–1511. [Google Scholar] [CrossRef] - Alfano, R.; Tang, G.; Pradhan, A.; Lam, W.; Choy, D.; Opher, E. Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J. Quantum Electron.
**1987**, 23, 1806–1811. [Google Scholar] [CrossRef] - Liu, C.H.; Alfano, R.R.; Sha, W.L.; Zhu, H.R.; Akins, D.L.; Cleary, J.; Prudente, R.; Cellmer, E. Human breast tissues studied by IR Fourier-transform Raman spectroscopy. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 12–17 May 1991; p. CWF51. [Google Scholar]
- Abramczyk, A.; Brozek-Pluska, B.; Surmacki, J.; Jablonska-Gajewicz, J.; Kordek, R. Raman optical biopsy of human breast cancer. Prog. Biophys. Mol. Biol.
**2012**, 108, 74–81. [Google Scholar] [CrossRef] [PubMed] - Liu, C.; Zhou, Y.; Sun, Y.; Li, J.Y.; Zhou, L.X.; Boydston-White, S.; Masilamani, V.; Zhu, K.; Pu, Y.; Alfano, R.R. Resonance Raman and Raman Spectroscopy for Breast Cancer Detection. Technol. Cancer Res. Treat.
**2013**, 12, 371–382. [Google Scholar] [CrossRef] - Wu, B.; Smith, J.; Zhang, L.; Gao, X.; Alfano, R.R. Characterization and discrimination of human breast cancer and normal breast tissues using resonance Raman spectroscopy. Proc. SPIE
**2018**, 10489, 104890X. [Google Scholar] - Lu, L.; Shi, L.; Secor, J.; Alfano, R. Resonance Raman scattering of beta-carotene solution excited by visible laser beams into second singlet state. J. Photochem. Photobiol. B Biol.
**2018**, 179, 18–22. [Google Scholar] [CrossRef] - Ghosh, N.; Vitkin, I. Tissue polarimetry: Concepts, challenges, applications and outlook. J. Biomed. Opt.
**2011**, 16, 110801. [Google Scholar] [CrossRef] - Tuchin, V.; Wang, L.; Zimnyakov, D. (Eds.) Optical Polarization in Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Tuchin, V. Handbook of Coherent-Domain Optical Methods, Biomedical Diagnostics, Environmental Monitoring and Material Science; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mishchenko, M.; Yatskiv, Y.; Rosenbush, V.; Videen, G. Polarimetric Detection, Characterization and Remote Sensing. In Mueller Matrix Characterization of Biological Tissues; Svaenkov, S., Ed.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2011; pp. 437–472. [Google Scholar]
- Pierangelo, A.; Nazac, A.; Benali, A.; Validire, P.; Cohen, H.; Novikova, T.; Ibrahim, B.H.; Manhas, S.; Fallet, C.; Antonelli, M.R.; et al. Polarimetric imaging of uterine cervix: A case study. Opt. Express
**2013**, 21, 14120–14130. [Google Scholar] [CrossRef] - Kunnen, B.; Macdonald, C.; Doronin, A.; Jacques, S.; Eccles, M.; Meglinski, I. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics
**2015**, 8, 317–323. [Google Scholar] [CrossRef] - Torres, J.; Torner, L. Twisted Photons: Applications of Light with Orbital Angular Momentum, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Cheng, W.; Haus, J.W.; Zhan, Q. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express
**2009**, 17, 17829–17836. [Google Scholar] [CrossRef] [PubMed] - Han, W.; Yang, Y.; Cheng, W.; Zhan, Q. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express
**2013**, 21, 20692–20706. [Google Scholar] [CrossRef] - Milione, G.; Nguyen, T.; Leach, J.; Nolan, D.; Alfano, R. Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett.
**2015**, 40, 4887–4890. [Google Scholar] [CrossRef] - Mamani, S.; Shi, L.; Ahmed, T.; Karnik, R.; Rodríguez-Contreras, A.; Nolan, D.; Alfano, R. Transmission of classically entangled beams through mouse brain tissue. J. Biophotonics
**2018**, 11, e201800096. [Google Scholar] [CrossRef] [PubMed] - Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light. Phys. Rev. Lett.
**2011**, 107, 053601. [Google Scholar] [CrossRef] - Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher Order Pancharatnam-Berry Phase and the Angular Momentum of Light. Phys. Rev. Lett.
**2012**, 108, 190401. [Google Scholar] [CrossRef] - Brosseau, C. Fundamentals of Polarized Light: A Statistical Optics Approach; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Kuzmin, V.; Meglinski, I. Numerical simulation of coherent back-scattering and temporal intensity correlations in random media (Overview). Quantum Electron.
**2006**, 36, 990–1002. [Google Scholar] [CrossRef] - Rojas-Ochoa, L.; Lacoste, D.; Lenke, R.; Schurtenberger, P.; Schefford, F. Depolarization of backscattered linearly polarized light. J. Opt. Soc. Am. A
**2004**, 21, 1799–1804. [Google Scholar] [CrossRef][Green Version] - Sawicki, J.; Kastor, N.; Xu, M. Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers. Opt. Express
**2008**, 16, 5728–5738. [Google Scholar] [CrossRef] - Radosevich, A.; Rogers, J.; Capoglu, I.; Mutyal, N.; Pradhan, P.; Backman, V. Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence. J. Biomed. Opt.
**2012**, 17, 115001. [Google Scholar] [CrossRef] - Wang, L.; Jacques, S.; Zheng, L. MCML—Monte Carlo modelling of light transport in multi-layered tissues. Comput. Methods Programs Biomed.
**1995**, 47, 131–146. [Google Scholar] [CrossRef] - Wang, X.; Wang, L. Propagation of polarized light in birefringent turbid media: A Monte Carlo study. J. Biomed. Opt.
**2002**, 7, 279–290. [Google Scholar] [CrossRef][Green Version] - Gangnus, S.; Matcher, S.; Meglinski, I. Monte Carlo modeling of polarized light propagation in biological tissues. Laser Phys.
**2004**, 14, 1–6. [Google Scholar] - Ramella-Roman, J.; Prahl, S.; Jacques, S. Three Monte Carlo programs of polarized light transport into scattering media: Part I. Opt. Express
**2005**, 13, 4420–4438. [Google Scholar] [CrossRef] - Doronin, A.; Radosevich, A.; Backman, V.; Meglinski, I. Two electric field Monte Carlo models of coherent backscattering of polarized light. J. Opt. Soc. Am. A
**2014**, 31, 2394–2400. [Google Scholar] [CrossRef] - Doronin, A.; Meglinski, I. Online object oriented Monte Carlo computational tool for the needs of biomedical optics. Biomed. Opt. Express
**2011**, 2, 2461–2469. [Google Scholar] [CrossRef][Green Version] - Doronin, A.; Meglinski, I. Peer-to-Peer Monte Carlo simulation of photon migration in topical applications of biomedical optics. J. Biomed. Opt.
**2012**, 17, 090504. [Google Scholar] [CrossRef] [PubMed] - Xu, M.; Alfano, R.R. Circular polarization memory of light. Phys. Rev. E
**2005**, 72, 065601. [Google Scholar] [CrossRef] - Sobol’, I. The Monte Carlo Method; The University of Chicago Press: Chicago, IL, USA, 1974. [Google Scholar]
- Wilson, B.; Adam, G. A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys.
**1983**, 10, 824–830. [Google Scholar] [CrossRef] - Prahl, S.; Keijzer, M.; Jacques, S.; Welch, A. A Monte Carlo model of light propagation in tissue. In SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology; Muller, G., Sliney, D., Eds.; Plenum Press: New York, NY, USA, 1989; Volume IS 5, pp. 102–111. [Google Scholar]
- Keijzer, M.; Jacques, S.; Prahl, S.; Welch, A. Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams. Lasers Surg. Med.
**1989**, 9, 148–154. [Google Scholar] [CrossRef] - Feng, S.; Fanan, Z.; Chance, B. Monte Carlo simulations of photon migration path distributions in multiple scattering media. Proc. SPIE
**1993**, 1888, 78–89. [Google Scholar] - Zhu, C.; Liu, Q. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt.
**2013**, 18, 050902. [Google Scholar] [CrossRef] - Henyey, L.; Greenstein, J. Diffuse radiation in the galaxy. Astrophys. J.
**1941**, 93, 70–83. [Google Scholar] [CrossRef] - Kirk, D.B.; Hwu, W. Programming Massively Parallel Processors: A Hands-On Approach; MK Publishers: Burlington, MA, USA, 2010. [Google Scholar]
- Jones, R. A new calculus for the treatment of optical systems. I. Description and discussion of the new calculus. J. Opt. Soc. Am.
**1941**, 31, 488–493. [Google Scholar] [CrossRef] - Jones, R. A new calculus for the treatment of optical systems. II. Description and discussion of the new calculus. J. Opt. Soc. Am.
**1941**, 31, 493–499. [Google Scholar] [CrossRef] - Gerald, A.; Burch, J. Introduction to Matrix Methods in Optics, 1st ed.; John Wiley & Sons: London, UK, 1975. [Google Scholar]
- Collett, E. The Essential Guide to Image Processing, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Rossum, M.; Nieuwenhuizen, T. Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion. Rev. Mod. Phys.
**1999**, 71, 313–370. [Google Scholar] [CrossRef] - Case, K.; Zweifel, P. Mesoscopic Physics of Electrons and Photons; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Carney, P.; Wolf, E.; Agarwal, G. Statistical generalizations of the optical cross-section theorem with application to inverse scatter. J. Opt. Soc. Am. A
**1997**, 14, 3366–3371. [Google Scholar] [CrossRef] - Kuzmin, V.; Meglinski, I. Coherent effects of multiple scattering for scalar and electromagnetic fields: Monte-Carlo simulation and Milne-like solutions. Opt. Commun.
**2007**, 273, 307–310. [Google Scholar] [CrossRef] - Churmakov, D.; Meglinski, I.; Greenhalgh, D. Influence of refractive index matching on the photon diffuse reflectance. Phys. Med. Biol.
**2002**, 47, 4271–4285. [Google Scholar] [CrossRef] - Al-Qasimi, A.; Korotkova, O.; James, D.; Wolf, E. Definitions of the Degree of Polarization of a Light Beam. Opt. Lett.
**2007**, 32, 1015–1016. [Google Scholar] [CrossRef] - Pedrotti, F.; Pedrotti, L.; Pedrotti, L. Introduction to Optics, 3rd ed.; Pearson: London, UK, 2007. [Google Scholar]
- Berrocal, E.; Meglinski, I.V.; Greenhalgh, D.A.; Linne, M.A. Image transfer through the complex scattering turbid media. Laser Phys. Lett.
**2006**, 3, 464–468. [Google Scholar] [CrossRef] - Wang, W.; Gozali, R.; Shi, L.; Lindwasser, L.; Alfano, R. Deep transmission of Laguerre-Gaussian vortex beams through turbid scattering media. Opt. Lett.
**2016**, 41, 2069–2072. [Google Scholar] [CrossRef] - Amic, E.; Luck, J.; Nieuwenhuizen, T.M. Anisotropic multiple scattering in diffusive media. J. Phys. A Math. Gen.
**1996**, 29, 4915–4955. [Google Scholar] [CrossRef] - Nieuwenhuizen, T.; Luck, J. Skin layer of diffusive media. Phys. Rev. E
**1993**, 48, 569–588. [Google Scholar] [CrossRef][Green Version] - Kuzmin, V.; Aksenova, E. A generalized Milne solution for the correlation effects of multiple light scattering with polarization. J. Exp. Theor. Phys.
**2003**, 96, 816–831. [Google Scholar] [CrossRef] - Kuzmin, V. The Milne problem solution for the temporal correlation function of an electromagnetic field. Opt. Spectrosc.
**2002**, 93, 439–448. [Google Scholar] [CrossRef] - Rosalez-Guzmán, C.; Bhebhe, N.; Forbes, A. Simultaneous generation of multiple vector beams on a single SLM. Opt. Express
**2017**, 25, 25697. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Schematic presentation of the cross-section of the cylindrical vector laser beams (CVB) with different polarization distribution, defined by l and $\sigma $. Here,

**left**: $l=+1,\phantom{\rule{3.33333pt}{0ex}}\sigma =-1$,

**middle**: $l=+2,\phantom{\rule{3.33333pt}{0ex}}\sigma =-1$ and

**right**: $l=+3,\phantom{\rule{3.33333pt}{0ex}}\sigma =-1$, respectively.

**Figure 2.**The block-diagram showing the principles of GPU-based computations of the resulting intensity of scattered light and its spatial distribution at the detector area (

**left**). Front screen of the online MC tool where each icon is associated with a particular application (

**right**), available online at http://www.lighttransport.net/.

**Figure 3.**The results of simulation of ${I}_{tot}$, co- ${I}_{\Vert}$ and cross- ${I}_{\perp}$ polarized components of a CVB with $l=+1,\phantom{\rule{3.33333pt}{0ex}}\sigma =-1$, transmitted through the scattering medium of various optical densities ($OD$): 1.08, 1.56, 2.00, 2.40, 2.73.

**Figure 4.**The results of MC simulation of co- ${I}_{\Vert}$ and cross- ${I}_{\perp}$ polarized components, and $DR$ for a Gaussian (

**left**, supplementary video S1) and CVB (

**right**, supplementary video S2) with $l=+1,\phantom{\rule{3.33333pt}{0ex}}\sigma =-1$, transmitted through a turbid medium, with two sets of optical properties: $g=0.0,{\mu}_{s}$ = 1–30 mm${}^{-1}$, $g=0.9,{\mu}_{s}$ = 10–300 mm${}^{-1}$, in both cases thickness is 100 $\mathsf{\mu}$m.

**Figure 5.**Schematic representation of the experiment setup to generate the desired CVB with the opposite charge.

**Figure 6.**The results of experimental measurements of ${I}_{tot}$, co- ${I}_{\Vert}$ and cross- ${I}_{\perp}$ polarized components of a CVB beam with $l=+1,\phantom{\rule{3.33333pt}{0ex}}\sigma =-1$ transmitted through a cuvette containing different concentrations of polystyrene microspheres solutions of various $OD$: 1.08, 1.56, 2.00, 2.40, 2.73.

**Figure 7.**The results of experimental measurements of fringe contrast for CVB propagated through the turbid scattering media in comparison to the results of MC modeling performed for the turbid media with the same optical properties.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Doronin, A.; Vera, N.; Staforelli, J.P.; Coelho, P.; Meglinski, I. Propagation of Cylindrical Vector Laser Beams in Turbid Tissue-Like Scattering Media. *Photonics* **2019**, *6*, 56.
https://doi.org/10.3390/photonics6020056

**AMA Style**

Doronin A, Vera N, Staforelli JP, Coelho P, Meglinski I. Propagation of Cylindrical Vector Laser Beams in Turbid Tissue-Like Scattering Media. *Photonics*. 2019; 6(2):56.
https://doi.org/10.3390/photonics6020056

**Chicago/Turabian Style**

Doronin, Alexander, Nicolás Vera, Juan P. Staforelli, Pablo Coelho, and Igor Meglinski. 2019. "Propagation of Cylindrical Vector Laser Beams in Turbid Tissue-Like Scattering Media" *Photonics* 6, no. 2: 56.
https://doi.org/10.3390/photonics6020056