Numerical Simulation of Mid-Infrared Optical Frequency Comb Generation in Chalcogenide As2S3 Microbubble Resonators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sorokina, I.T.; Vodopyanov, K.L. (Eds.) Solid-State Mid-Infrared Laser Sources; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- Petersen, C.R.; Møller, U.; Kubat, I.; Zhou, B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z.; et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830–834. [Google Scholar] [CrossRef]
- Soboń, G.; Martynkien, T.; Mergo, P.; Rutkowski, L.; Foltynowicz, A. High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequency generation pumped by an Yb-doped fiber laser. Opt. Lett. 2017, 42, 1748–1751. [Google Scholar] [CrossRef] [PubMed]
- Henderson-Sapir, O.; Munch, J.; Ottaway, D.J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping. Opt. Lett. 2014, 39, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Mitrofanov, A.V.; Voronin, A.A.; Mitryukovskiy, S.I.; Sidorov-Biryukov, D.A.; Pugžlys, A.; Andriukaitis, G.; Flöry, T.; Stepanov, E.A.; Fedotov, A.B.; Baltuška, A.; et al. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics. Opt. Lett. 2015, 40, 2068–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sójka, L.; Pajewski, L.; Popenda, M.; Beres-Pawlik, E.; Lamrini, S.; Markowski, K.; Osuch, T.; Benson, T.M.; Seddon, A.B.; Sujecki, S. Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber. IEEE Photonics Technol. Lett. 2018, 30, 1083–1086. [Google Scholar] [CrossRef]
- Sujecki, S.; Sojka, L.; Seddon, A.; Benson, T.; Barney, E.; Falconi, M.; Prudenzano, F.; Marciniak, M.; Baghdasaryan, H.; Peterka, P.; et al. Comparative modeling of infrared fiber lasers. Photonics 2018, 5, 48. [Google Scholar] [CrossRef]
- Silaev, A.A.; Kostin, V.A.; Laryushin, I.D.; Vvedenskii, N.V. Ionization mechanism of the generation of tunable ultrashort pulses in the mid-infrared range. JETP Lett. 2018, 107, 151–156. [Google Scholar] [CrossRef]
- Anashkina, E.A. Design and numerical modeling of broadband mid-IR rare-earth-doped chalcogenide fiber amplifiers. IEEE Photon. Technol. Lett. 2018, 30, 1190–1193. [Google Scholar] [CrossRef]
- Luke, K.; Okawachi, Y.; Lamont, M.R.E.; Gaeta, A.L.; Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 2015, 40, 4823–4826. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Okawachi, Y.; Griffith, A.G.; Lipson, M.; Gaeta, A.L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 2016, 3, 854–860. [Google Scholar] [CrossRef]
- Savchenkov, A.; Ilchenko, V.S.; Di Teodoro, F.; Belden, P.M.; Lotshaw, W.T.; Matsko, A.B.; Maleki, L. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. Opt. Lett. 2015, 40, 3468–3471. [Google Scholar] [CrossRef]
- Strekalov, D.V.; Marquardt, C.; Matsko, A.B.; Schwefel, H.G.; Leuchs, G. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 2016, 18, 123002. [Google Scholar] [CrossRef] [Green Version]
- Sumetsky, M. Optical bottle microresonators. Prog. Quantum Electron. 2019, 64, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Webb, K.E.; Erkintalo, M.; Coen, S.; Murdoch, S.G. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett. 2016, 41, 4613–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Jiang, X.; Kasumie, S.; Zhao, G.; Xu, L.; Ward, J.M.; Yang, L.; Chormaic, S.N. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Opt. Lett. 2016, 41, 5266–5269. [Google Scholar] [CrossRef] [Green Version]
- Anashkina, E.A.; Sorokin, A.A.; Marisova, M.P.; Andrianov, A.V. Development and numerical simulation of spherical microresonators based on SiO2–GeO2 germanosilicate glasses for generation of optical frequency combs. Quantum Electron. 2019, 49, 371–376. [Google Scholar] [CrossRef]
- Tao, G.; Ebendorff-Heidepriem, H.; Stolyarov, A.M.; Danto, S.; Badding, J.V.; Fink, Y.; Ballato, J.; Abouraddy, A.F. Infrared fibers. Adv. Opt. Photonics 2015, 7, 379–458. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Luther-Davies, B.; Richardson, K. Chalcogenide photonics. Nat. Photonics 2011, 5, 141–148. [Google Scholar] [CrossRef]
- Romanova, E.; Kuzyutkina, Y.; Shiryaev, V.; Abdel-Moneim, N.; Furniss, D.; Benson, T.; Seddon, A.; Guizard, S. Measurement of non-linear optical coefficients of chalcogenide glasses near the fundamental absorption band edge. J. Non-Cryst. Solids 2018, 480, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Anashkina, E.A.; Shiryaev, V.S.; Snopatin, G.E.; Muraviev, S.V.; Kim, A.V. On the possibility of mid-IR supercontinuum generation in As-Se-Te/As-S core/clad fibers with all-fiber femtosecond pump source. J. Non-Cryst. Solids 2018, 480, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Anashkina, E.A.; Shiryaev, V.S.; Koptev, M.Y.; Stepanov, B.S.; Muravyev, S.V. Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion. J. Non-Cryst. Solids 2018, 480, 43–50. [Google Scholar] [CrossRef]
- Yang, K.; Dai, S.; Wu, Y.; Nie, Q. Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at ~1.9 μm. Chin. Phys. B 2018, 27, 117701. [Google Scholar] [CrossRef]
- Grillet, C.; Bian, S.N.; Magi, E.C.; Eggleton, B.J. Fiber taper coupling to chalcogenide microsphere modes. Appl. Phys. Lett. 2008, 92, 171109. [Google Scholar] [CrossRef]
- Wang, P.; Murugan, G.S.; Brambilla, G.; Ding, M.; Semenova, Y.; Wu, Q.; Farrell, G. Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface. IEEE Photon. Technol. Lett. 2012, 24, 1103–1105. [Google Scholar] [CrossRef]
- Romanova, E.A.; Zhivotkov, D.S.; Ristic, D.; Ivanda, M.; Shiryaev, V.S. Design of optical microresonators for fiber-optic sensor networks transparent in Mid-IR. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 291–295. [Google Scholar]
- Brasch, V.; Geiselmann, M.; Herr, T.; Lihachev, G.; Pfeiffer, M.H.; Gorodetsky, M.L.; Kippenberg, T.J. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 2016, 351, 357–360. [Google Scholar] [CrossRef]
- Cherenkov, A.V.; Lobanov, V.E.; Gorodetsky, M.L. Dissipative Kerr solitons and Cherenkov radiation in optical microresonators with third-order dispersion. Phys. Rev. A 2017, 95, 033810. [Google Scholar] [CrossRef] [Green Version]
- Riesen, N.; Zhang, W.Q.; Monro, T.M. Dispersion analysis of whispering gallery mode microbubble resonators. Opt. Express 2016, 24, 8832–8847. [Google Scholar] [CrossRef] [PubMed]
- Riesen, N.; Vahid, S.A.; François, A.; Monro, T.M. Material candidates for optical frequency comb generation in microspheres. Opt. Express 2015, 23, 14784–14795. [Google Scholar] [CrossRef]
- Fortin, V.; Maes, F.; Bernier, M.; Bah, S.T.; D’Auteuil, M.; Vallée, R. Watt-level erbium-doped all-fiber laser at 3.44 μm. Opt. Lett. 2016, 41, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Hai, T.; Xie, G.; Ma, J.; Yuan, P.; Qian, L.; Li, L.; Zhao, L.; Shen, D. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength. Opt. Express 2018, 26, 8224–8231. [Google Scholar] [CrossRef]
- Teraoka, I.; Arnold, S. Whispering-gallery modes in a microsphere coated with a high-refractive index layer: Polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching. J. Opt. Soc. Am. B 2007, 24, 653–659. [Google Scholar] [CrossRef]
- Chaudhari, C.; Suzuki, T.; Ohishi, Y. Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers. J. Lightw. Technol. 2009, 27, 2095–2099. [Google Scholar] [CrossRef]
- Gorodetsky, M.L.; Ilchenko, V.S. Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 1999, 16, 147–154. [Google Scholar] [CrossRef]
- Lugiato, L.A.; Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 1987, 58, 2209–2211. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Wai, P.K.A.; Menyuk, C.R.; Lee, Y.C.; Chen, H.H. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 1986, 11, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Skryabin, D.V.; Luan, F.; Knight, J.C.; Russell, P.S.J. Soliton self-frequency shift cancellation in photonic crystal fibers. Science 2003, 301, 1705–1708. [Google Scholar] [CrossRef] [PubMed]
- Andrianov, A.; Anashkina, E.; Muravyev, S.; Kim, A. All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high-power ultrashort pulse generation. Opt. Lett. 2010, 35, 3805–3807. [Google Scholar] [CrossRef]
- Kotov, L.V.; Koptev, M.Y.; Anashkina, E.A.; Muravyev, S.V.; Andrianov, A.V.; Bubnov, M.M.; Ignat’ev, A.D.; Lipatov, D.S.; Gur’yanov, A.N.; Likhachev, M.E.; et al. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths. Quantum Electron. 2014, 44, 458–464. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anashkina, E.A.; Marisova, M.P.; Sorokin, A.A.; Andrianov, A.V. Numerical Simulation of Mid-Infrared Optical Frequency Comb Generation in Chalcogenide As2S3 Microbubble Resonators. Photonics 2019, 6, 55. https://doi.org/10.3390/photonics6020055
Anashkina EA, Marisova MP, Sorokin AA, Andrianov AV. Numerical Simulation of Mid-Infrared Optical Frequency Comb Generation in Chalcogenide As2S3 Microbubble Resonators. Photonics. 2019; 6(2):55. https://doi.org/10.3390/photonics6020055
Chicago/Turabian StyleAnashkina, Elena A., Maria P. Marisova, Arseny A. Sorokin, and Alexey V. Andrianov. 2019. "Numerical Simulation of Mid-Infrared Optical Frequency Comb Generation in Chalcogenide As2S3 Microbubble Resonators" Photonics 6, no. 2: 55. https://doi.org/10.3390/photonics6020055
APA StyleAnashkina, E. A., Marisova, M. P., Sorokin, A. A., & Andrianov, A. V. (2019). Numerical Simulation of Mid-Infrared Optical Frequency Comb Generation in Chalcogenide As2S3 Microbubble Resonators. Photonics, 6(2), 55. https://doi.org/10.3390/photonics6020055