# International System of Units (SI) Traceable Noise-Equivalent Power and Responsivity Characterization of Continuous Wave ErAs:InGaAs Photoconductive Terahertz Detectors

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Model for the NEP and Responsivity of PCAs

## 3. Experimental Setup

## 4. Results

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Measured Power and Currents

**Figure A2.**Comparison between the experimentally obtained and the calculated rectified current of PCA A and B.

## References

- Deninger, A.; Göbel, T.; Schönherr, D.; Kinder, A.; Roggenbuck, A.; Köberle, M.; Lison, F. Precisely tunable continuous-wave terahertz source with interferometric frequency control. Rev. Sci. Instrum.
**2008**, 79, 044702. [Google Scholar] [CrossRef] [PubMed] - Harter, T.; Weber, M.; Muehlbrandt, S.; Wolf, S.; Kemal, J.; Boes, F.; Nellen, S.; Goebel, T.; Giesekus, J.; Zwick, T.; et al. Wireless THz Communications Using Optoelectronic Techniques for Signal Generation and Coherent Reception. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 14–19 May 2016. [Google Scholar]
- Harter, T.; Adib, M.M.H.; Wolf, S.; Muehlbrandt, S.; Weber, M.; Blaicher, M.; Boes, F.; Massler, H.; Tessmann, A.; Nellen, S.; et al. Wireless Multi-Subcarrier THz Communications Using Mixing in a Photoconductor for Coherent Reception. In Proceedings of the IEEE Photonics Conference, Orlando, FL, USA, 1–5 October 2017. [Google Scholar]
- Scheller, M.; Baaske, K.; Koch, M. Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination. Appl. Phys. Lett.
**2010**, 96, 151112. [Google Scholar] [CrossRef] - Wilk, R.; Breitfeld, M.; Mikulics, M.; Koch, M. Continuous wave terahertz spectrometer as a noncontact thickness measuring device. Appl. Opt.
**2008**, 47, 3023–3026. [Google Scholar] [CrossRef] [PubMed] - Stanze, D.; Globisch, B.; Dietz, J.B.R.; Roehle, H.; Göbel, T.; Schell, M. Multilayer Thickness Determination Using Continuous Wave THz Spectroscopy. IEEE Trans. Terahertz Sci. Technol.
**2014**, 4, 696–701. [Google Scholar] [CrossRef] - Sartorius, B.; Schlak, M.; Stanze, D.; Roehle, H.; Künzel, H.; Schmidt, D.; Bach, H.-G.; Kunkel, R.; Schell, M. Continuous wave terahertz systems exploiting 1.5 μm telecom technologies. Opt. Express
**2009**, 17, 15001–15007. [Google Scholar] [CrossRef] [PubMed] - Sukhotin, M.; Brown, E.R.; Gossard, A.C.; Driscoll, D.; Hanson, M.; Maker, P.; Muller, R. Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55 μm. Appl. Phys. Lett.
**2003**, 82, 3116–3118. [Google Scholar] [CrossRef] - Göbel, T.; Stanze, D.; Globisch, B.; Dietz, J.B.R.; Roehle, H.; Schell, M. Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth. Opt. Lett.
**2013**, 38, 4197–4199. [Google Scholar] [CrossRef] [PubMed] - Kim, J.-Y.; Song, H.-J.; Yaita, M.; Hirata, A.; Ajito, K. CW-THz vector spectroscopy and imaging system based on 1.55-μm fiber-optics. Opt. Express
**2014**, 22, 1735–1741. [Google Scholar] [CrossRef] [PubMed] - Globisch, B.; Dietz, R.J.B.; Göbel, T.; Schell, M.; Bohmeyer, W.; Müller, R.; Steiger, A. Absolute terahertz power measurement of a time-domain spectroscopy system. Opt. Lett.
**2015**, 40, 3544–3547. [Google Scholar] [CrossRef] [PubMed] - Garufo, A.; Carluccio, G.; Freeman, J.R.; Bacon, D.R.; Llombart, N.; Linfield, E.H.; Davies, A.G.; Neto, A. Norton Equivalent Circuit for Pulsed Photoconductive Antennas—Part II: Experimental Validation. IEEE Trans. Antennas Propag.
**2018**, 66, 1646–1659. [Google Scholar] [CrossRef] - Steiger, A.; Muller, R.; Remesal Oliva, A.; Deng, Y.; Sun, Q.; White, M.; Lehman, J. Terahertz Laser Power Measurement Comparison. IEEE Trans. Terahertz Sci. Technol.
**2016**, 6, 664–669. [Google Scholar] - Fernandez Olvera, A.D.J.; Lu, H.; Gossard, A.C.; Preu, S. Continuous-wave 1550 nm operated terahertz system using ErAs:In(Al)GaAs photoconductors with 52 dB dynamic range at 1 THz. Opt. Express
**2017**, 25, 29492–29500. [Google Scholar] [CrossRef] - Preu, S. A Unified Derivation of the Terahertz Spectra Generated by Photoconductors and Diodes. J. Infrared Milli Terahz Waves
**2014**, 35, 998–1010. [Google Scholar] [CrossRef] - Collin, R.E. Limitations of the Thevenin and Norton Equivalent Circuits for a Receiving Antenna. IEEE Trans. Antennas Propag. Mag.
**2003**, 45, 119–124. [Google Scholar] [CrossRef] - Garufo, A.; Carluccio, G.; Freeman, J.R.; Bacon, D.R.; Llombart, N.; Linfield, E.H.; Davies, A.G.; Neto, A. Norton Equivalent Circuit for Pulsed Photoconductive Antennas—Part I: Theoretical model. IEEE Trans. Antennas Propag.
**2018**, 66, 1635–1645. [Google Scholar] [CrossRef] - Müller-Landau, C.; Malzer, S.; Weber, H.B.; Döhler, G.H.; Winnerl, S.; Burke, P.; Gossard, A.C.; Preu, S. Terahertz generation with ballistic photodiodes under pulsed operation. Semicond. Sci. Technol.
**2018**, 33, 11. [Google Scholar] [CrossRef] - Suen, J.Y.; Krogen, P.R.; Preu, S.; Lu, H.; Gossard, A.C.; Driscoll, D.C.; Lubin, P.M. Measurement and modeling of ErAs: In0. 53Ga0. 47As nanocomposite photoconductivity for THz generation at 1.55 μm pump wavelength. J. Appl. Phys.
**2014**, 116, 013703. [Google Scholar] [CrossRef] - Liu, L.; Hesler, J.L.; Weikle, R.M.; Wang, T.; Fay, P.; Xing, H. A 570-630 GHz frequency domain terahertz spectroscopy system based on a broadband quasi-optical zero bias schottky diode detector. Int. J. High Speed Electron. Syst.
**2011**, 20, 629–638. [Google Scholar] [CrossRef] - Semenov, A.; Cojocari, O.; Hübers, H.-W.; Song, F.; Klushin, A.; Müller, A.-S. Application of Zero-Bias Quasi-Optical Schottky-Diode Detectors for Monitoring Short-Pulse and Weak Terahertz Radiation. IEEE Electron Devices Lett.
**2010**, 31, 674–675. [Google Scholar] [CrossRef] - Hesler, J.L.; Crowe, T.W. Responsivity and Noise Measurements of Zero-Bias Schottky Diode Detectors. In Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, CA, USA, 21–23 March 2007; pp. 674–676. [Google Scholar]
- Blundell, R.; Miller, R.E.; Gundlach, K.H. Understading Noise in SIS receivers. J. Infrared Milli Terahz Waves
**1992**, 13, 1. [Google Scholar]

**Figure 1.**Geometric layout of the finger electrode (black) structure on the photoconductive material (blue) with geometric variables as defined in the text: (

**a**) Top view (

**b**) Cross-sectional view (red lines depict the field lines across the gap).

**Figure 2.**Equivalent circuit of the receiving antenna including the incoming THz wave with power ${P}_{THz}\left(f\right)$, the antenna and the photoconductor. The value of ${U}_{THz}\left(f\right)$ is the Thevenin equivalent open-circuit voltage source, as defined in [16].

**Figure 3.**Experimental setup for the measurements. For THz power measurement, the detector was a pyroelectric device, calibrated by the PTB. For the THz current measurements, it was replaced by the PCAs.

**Figure 4.**Squared detected THz current versus measured THz power for PCA B. The fitted responsivity $S\left(f\right)$ (shown in dashed lines) was equated to Equation (10) in order to obtain the effective THz effiency ${\eta}_{THz}^{eff}$. The minimum THz power that could be measured was limited by the sensitivity of the PTB calibrated detector (1 $\mu $W).

**Figure 5.**Comparison between the calculated and experimentally obtained responsivities of (

**a**) PCA A (

**b**) PCA B. ${\eta}_{THz}^{eff}$ is assumed frequency-independent.

**Figure 6.**Comparison between the calculated (${\eta}_{THz}^{eff}$ = 0.012, ${I}_{noise}={I}_{therm}$), the ideal (with ${\eta}_{THz}^{eff}$ = 1, ${I}_{noise}={I}_{therm}$), and the experimentally obtained NEPs for PCA A and B. The figure also shows the ideal performance of PCA C.

**Table 1.**PCA parameters for calculation of responsivity and noise-equivalent power (NEP). ${I}_{noise}$ is the measured current noise of the detectors while ${I}_{therm}$ is the ideal thermal noise floor.

PCA | ${\mathit{Z}}_{\mathit{A}}\phantom{\rule{3.33333pt}{0ex}}\left(\mathsf{\Omega}\right)$ | C (fF) | ${\mathit{\eta}}_{\mathit{THz}}^{\mathit{eff}}$ | ${\mathit{\tau}}_{\mathit{rec}}$ (fs) | ${\mathit{R}}_{\mathit{PC}}$ (kΩ) | ${\mathit{P}}_{\mathit{L}}$ (mW) | ${\mathit{I}}_{\mathit{therm}}$ (pA/$\sqrt{\mathbf{Hz}}$) | ${\mathit{I}}_{\mathit{noise}}$ (pA/$\sqrt{\mathbf{Hz}}$) |
---|---|---|---|---|---|---|---|---|

A | 47.3-5i – | 3.6 | 0.012 | 530 | 16.66 | 25.3 | 0.993 | 2.59 |

119.3+30.4i | ||||||||

B | 47.3-5.0i – | 3.6 | 0.012 | 530 | 12.8 | 24.7 | 1.13 | 7.03 |

119.3+30.4i | ||||||||

C | 60.8+5.0i – | 3.6 | NA | 520 | 5.6 | 26 | 1.72 | 8.48 |

95.5+17.5i |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fernandez Olvera, A.d.J.; Roggenbuck, A.; Dutzi, K.; Vieweg, N.; Lu, H.; Gossard, A.C.; Preu, S. International System of Units (SI) Traceable Noise-Equivalent Power and Responsivity Characterization of Continuous Wave ErAs:InGaAs Photoconductive Terahertz Detectors. *Photonics* **2019**, *6*, 15.
https://doi.org/10.3390/photonics6010015

**AMA Style**

Fernandez Olvera AdJ, Roggenbuck A, Dutzi K, Vieweg N, Lu H, Gossard AC, Preu S. International System of Units (SI) Traceable Noise-Equivalent Power and Responsivity Characterization of Continuous Wave ErAs:InGaAs Photoconductive Terahertz Detectors. *Photonics*. 2019; 6(1):15.
https://doi.org/10.3390/photonics6010015

**Chicago/Turabian Style**

Fernandez Olvera, Anuar de Jesus, Axel Roggenbuck, Katja Dutzi, Nico Vieweg, Hong Lu, Arthur C. Gossard, and Sascha Preu. 2019. "International System of Units (SI) Traceable Noise-Equivalent Power and Responsivity Characterization of Continuous Wave ErAs:InGaAs Photoconductive Terahertz Detectors" *Photonics* 6, no. 1: 15.
https://doi.org/10.3390/photonics6010015