Editorial: Frontiers and Applications of Laser Detection—From Spectral Imaging to Lidar Remote Sensing
Acknowledgments
Conflicts of Interest
References
- Xu, F.; Qiao, D.; Xia, C.; Song, X.; Zheng, W.; He, Y.; Fan, Q. A semi-coaxial MEMS LiDAR design with independently adjustable detection range and angular resolution. Sens. Actuators A Phys. 2021, 326, 112715. [Google Scholar] [CrossRef]
- Zhang, H.-S.; Qiao, L.-L.; Cheng, Y. Air lasing: Remote high-resolution spectroscopy for atmospheric sensing. Acta Phys. Sin. 2022, 71, 233401. [Google Scholar] [CrossRef]
- Ran, Y.; Song, S.; Hou, X.; Chen, Y.; Chen, Z.; Gong, W. Multi-echo hyperspectral reflectance extraction method based on full waveform hyperspectral LiDAR. ISPRS J. Photogramm. Remote Sens. 2024, 207, 43–56. [Google Scholar] [CrossRef]
- Li, A.-W.; Shan, T.-Q.; Guo, Q.; Pan, X.-P.; Liu, S.-R.; Chen, C.; Yu, Y.-S. Fiber Fabry-Perot interferometric high-temperature sensors for aerospace monitoring. Chin. Opt. 2022, 15, 609–624. [Google Scholar] [CrossRef]
- Han, M.-M.; Wei, H.-Y.; Zou, W.; Meng, L.; Zhang, M.-P.; Meng, X.; Chen, W.-W.; Shao, H.; Wang, C.-J. Rapid on-site detection of coumatetralyl in environmental water based on surface-enhanced Raman spectroscopy. Environ. Chem. 2023, 42, 1524–1532. [Google Scholar] [CrossRef]
- Liu, W.-Q. Opportunities and Challenges for Development of Atmospheric Environmental Optics Monitoring Technique Under “Double Carbon” Goal. Acta Opt. Sin. 2022, 42, 0600001. [Google Scholar] [CrossRef]
- Yang, S.; Kim, J.; Swartz, M.E.; Eberhart, J.K.; Chowdhury, S. DMD and microlens array as a switchable module for illumination angle scanning in optical diffraction tomography. Biomed. Opt. Express 2024, 15, 5932–5946. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, H.; Yuan, L.; Zhang, Z.; Fu, B.; Yu, S.; Li, G.; Zhang, N.; Lu, X.; Yao, J.; et al. Background-free single-beam coherent raman spectroscopy assisted by air lasing. Optics Letter. 2022, 47, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Liu, J.; Chen, B.; Zhou, M. Mid-infrared dual-comb spectroscopy for multi-component gas analysis in industrial emissions. Appl. Sci. 2021, 11, 3660. [Google Scholar] [CrossRef]
- Tang, D.; Li, Z.; Xia, H. Clustering of weak fluorescence spectra from bioaerosol in air using laser-induced fluorescence lidar. Opt. Express 2025, 33, 24396–24412. [Google Scholar] [CrossRef]
- Wen, H.-Y.; Weng, Y.-Q.; Chen, R.-Y.; Hsu, H.-C.; Yeh, Y.-T.; Chiang, C.-C. A double helix-shaped optical fiber sensor for non-endoscopic diagnosis of gastrin-17. Analyst 2022, 147, 4562–4569. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, Y.-P.; Li, H.-H.; Wang, L.; Zhang, K.; Sun, Q. OrchardQuant-3D: Drone-LiDAR fusion for 3D phenotyping of floral traits. Plant Biotechnol. J. 2025, 23, 1254–1270. [Google Scholar] [CrossRef]
- Haierxin Photonics R&D Team; Liu, X.; Zhang, F.; Li, Q. Mid-infrared quantum cascade lasers for non-invasive medical diagnostics. J. Biophotonics 2025, 18, e202400123. [Google Scholar] [CrossRef]
- Chen, P.-P.; Whitfield, C.; Zhang, F.-H.; Li, X.; Wang, G. LPVIMO-SAM: Multi-sensor SLAM with polarization vision for degraded environments. IEEE Robot. Autom. Lett. 2025, 10, 4500–4507. [Google Scholar]
- Shi, B.; Zheng, M.-Y.; Hu, Y.; Zhao, Y.; Shang, Z.; Zhong, Z.; Chen, Z.; Luo, Y.-H.; Long, J.; Sun, W.; et al. A hyperfine-transition-referenced vector spectrum analyzer for visible-light integrated photonics. Nat. Commun. 2025, 16, 61970. [Google Scholar] [CrossRef] [PubMed]
- Beer, M.; Haase, J.; Charbon, E. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection. Sensors 2018, 18, 4338. [Google Scholar] [CrossRef]
- Carreón, R.V.; Rodríguez-Hernández, A.G.; Serrano de la Rosa, L.E.; Gervacio-Arciniega, J.J.; Krishnan, S.K. Mechanically Flexible, Large-Area Fabrication of Three-Dimensional Dendritic Au Films for Reproducible Surface-Enhanced Raman Scattering Detection of Nanoplastics. ACS Sens. 2025, 10, 1747–1755. [Google Scholar] [CrossRef]
- Svanberg, S.; Kaldvee, J.; Andersson, M.; Persson, L. Laser spectroscopy in ecological and medical applications: From leaf photosynthesis to cancer diagnostics. J. Biomed. Opt. 2021, 26, 080601. [Google Scholar] [CrossRef]
- Chen, M.; Liu, D.; Qiao, L.; Zhou, P.; Feng, J.; Ng, K.W.; Liu, Q.; Wang, S.; Pan, H. In-situ/operando Raman techniques for in-depth understanding of electrocatalysis. Chem. Eng. J. 2023, 457, 141280. [Google Scholar] [CrossRef]
- Sigernes, F.; Dyrland, M.; Peters, N.; Lorentzen, D.; Baddeley, L. Hyperspectral imaging from unmanned aerial vehicles for Arctic environmental monitoring. Remote Sens. Environ. 2023, 287, 113482. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Chen, Y.; Xiang, Y.; Huang, T.; Shum, P.P.; Wu, Z. Fiber structures and material science in optical fiber magnetic field sensors. Front. Optoelectron. 2022, 15, 34. [Google Scholar] [CrossRef]
- Chen, B.; Xu, T.; Wang, S.; Li, Y.; Zhang, G. Optical fiber sensors: Principles and applications in smart infrastructure. Sensors 2022, 22, 8793. [Google Scholar] [CrossRef]
- Kar, J.; Vaughan, M.A.; Lee, K.-P.; Tackett, J.L.; Avery, M.A.; Garnier, A.; Getzewich, B.J.; Hunt, W.H.; Josset, D.; Liu, Z.; et al. CALIPSO lidar calibration at 532 nm: Version 4 nighttime algorithm. Atmos. Meas. Tech. 2018, 11, 1459–1479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Huang, X.; Ren, X.; Sun, Y.; Liu, Z. Underwater lidar based on blue-green supercontinuum laser for marine particle profiling. Opt. Lasers Eng. 2025, 166, 107612. [Google Scholar] [CrossRef]
- Brosseau, C.L.; Colina, A.; Perales-Rondon, J.V.; McCabe, E.M.; Smith, W.E.; Ren, B.; Wang, X. Electrochemical surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2023, 3, 79. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhao, M.; Tian, H. Editorial: Frontiers and Applications of Laser Detection—From Spectral Imaging to Lidar Remote Sensing. Photonics 2025, 12, 853. https://doi.org/10.3390/photonics12090853
Chen J, Zhao M, Tian H. Editorial: Frontiers and Applications of Laser Detection—From Spectral Imaging to Lidar Remote Sensing. Photonics. 2025; 12(9):853. https://doi.org/10.3390/photonics12090853
Chicago/Turabian StyleChen, Jianfeng, Ming Zhao, and He Tian. 2025. "Editorial: Frontiers and Applications of Laser Detection—From Spectral Imaging to Lidar Remote Sensing" Photonics 12, no. 9: 853. https://doi.org/10.3390/photonics12090853
APA StyleChen, J., Zhao, M., & Tian, H. (2025). Editorial: Frontiers and Applications of Laser Detection—From Spectral Imaging to Lidar Remote Sensing. Photonics, 12(9), 853. https://doi.org/10.3390/photonics12090853