Research on Enhancing Target Recognition Rate Based on Orbital Angular Momentum Spectrum with Assistance of Neural Network
Abstract
1. Introduction
2. Methods
2.1. Orbital Angular Momentum Spectrum Theory
2.2. OAM Spectral Characteristic of the Vortex Beam After Being Reflected by Targets of Different Shapes
2.3. Neural Network Structure Analysis and OAM Spectrum Data Training Method
3. Results and Discussion
3.1. The Impact of Atmospheric Turbulence Intensity on Recognition Rate
3.2. Impact of Emission Beam Topological Charge on Recognition Rate
3.3. The Impact of Target Size on Recognition Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
(a) MLP | ||
Layers | Accuracy (%) | Time (s) |
21-128-4 | 77.5 | 22 |
21-128-256-128-4 | 86.25 | 126 |
21-128-256-512-256-128-4 | 92 | 332 |
(b) ResNet | ||
The retained residual block number | Accuracy (%) | Time (s) |
Block 1,2 | 92.5 | 152 |
Block 1,2,3 | 93.75 | 226 |
Block 1,2,3,4(ResNet18) | 95.5 | 476 |
Network | Accuracy (%) | Time (s) |
---|---|---|
MLP | 92 | 332 |
CNN | 90.75 | 96 |
ResNet | 95.5 | 476 |
Method | Accuracy (%) | Notes |
---|---|---|
Random Guessing | 25 | Baseline for random selection among four categories. |
Simpler Classifier (21-10-4) | 71.5 | Average performance using simpler classifiers on the same dataset. |
GS Algorithm in [14] | 88 | High recognition rate but suffers from high computational demands and real-time adaptation issues. |
Proposed MLP | 92 | Optimal configuration with high recognition rate and medium computational cost. |
Proposed CNN | 90.75 | Most efficient processing of spatially structured data like OAM spectra in three proposed models. |
Proposed ResNet | 95.5 | Deep network structure with residual blocks, offering superior performance and stability under strong turbulence and increasing of target size. |
References
- Lian, Y.; Qi, X.; Wang, Y.; Bai, Z.; Wang, Y.; Lu, Z. Oam Beam Generation in Space and Its Applications: A Review. Opt. Lasers Eng. 2022, 151, 106923. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Zhang, Y.; Zhou, Y.; Yao, B. Orbital Angular Momentum in Optical Manipulations. J. Opt. 2022, 24, 114001. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a Twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Bacco, D.; Cozzolino, D.; Da Lio, B.; Ding, Y.; Rottwitt, K.; Oxenløwe, L.K. Quantum Communication with Orbital Angular Momentum. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON) 2020, Bari, Italy, 19–23 July 2020. [Google Scholar]
- Zhongyi, G.; Chaofan, G.; Hongjun, L.; Jingjing, L.; Zikun, W.; Yang, Y.; Yubin, G. Research Advances of Orbital Angular Momentum Based Optical Communication Technology. Opto-Electron. Eng. 2020, 47, 190593–1-93-34. [Google Scholar]
- Liu, K.; Cheng, Y.; Liu, H.; Wang, H. Computational Imaging with Low-Order Oam Beams at Microwave Frequencies. Sci. Rep. 2020, 10, 11641. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Dou, J.; Zhao, J.; Li, B. Influences of Salinity and Temperature on Propagation of Radially Polarized Rotationally-Symmetric Power-Exponent-Phase Vortex Beams in Oceanic Turbulence. Opt. Express 2022, 30, 42772–42783. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhao, M.; Zhang, M.; Dou, J.; Zhao, J.; Li, B.; Hu, Y. Propagation Properties of Rotationally-Symmetric Power-Exponent-Phase Vortex Beam through Oceanic Turbulence. Opt. Laser Technol. 2022, 159, 109024. [Google Scholar] [CrossRef]
- Huang, G.; Geng, C.; Li, F.; Yang, Y.; Li, X. Adaptive Smf Coupling Based on Precise-Delayed Spgd Algorithm and Its Application in Free Space Optical Communication. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Riesgo, F.G.; Gómez, S.L.S.; Rodríguez, J.D.S.; Gutiérrez, C.G.; Hernando, Y.M.; Martínez, L.M.M.; Ramos, A.A.; Vera, M.C.; Cagigal, M.N.; Juez, F.J.D.C. Comparative Study of Shack-Hartmann Configurations for Atmospheric Turbulence Reconstructions in Solar Adaptive Optics. Opt. Lasers Eng. 2022, 158, 107157. [Google Scholar] [CrossRef]
- Fu, S.; Wang, T.; Zhang, S.; Zhang, Z.; Zhai, Y.; Gao, C. Non-Probe Compensation of Optical Vortices Carrying Orbital Angular Momentum. Photonics Res. 2017, 5, 251–255. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Gao, C.; Willner, A.E.; Wang, J. Atmospheric Turbulence Compensation in Orbital Angular Momentum Communications: Advances and Perspectives. Opt. Commun. 2018, 408, 68–81. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, W.; Li, J.; Ma, W. Modified Gerchberg-Saxton algorithm-based probe-free wavefront distortion compensation of an OAM beam. Optik 2022, 269, 169816. [Google Scholar] [CrossRef]
- Cui, C.; Wang, H.; Zhang, Z.; Lin, R.; Yun, H.; Lv, X.; Song, J.; Feng, R.; Zhao, Y. Enhancing Target Recognition Rate in Atmospheric Turbulence Using Orbital Angular Momentum Spectra of Vortex Beams. Phys. Scr. 2024, 99, 125514. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Li, Y.; Cen, L. Multidimensional Information Assisted Deep Learning Realizing Flexible Recognition of Vortex Beam Modes. IEEE Photonics J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Zhou, S.; Li, L.; Gao, C.; Fu, S. Deep-Learning Assisted Fast Orbital Angular Momentum Complex Spectrum Analysis. Opt. Lett. 2023, 49, 173–176. [Google Scholar] [CrossRef]
- Xiong, W.; Luo, Y.; Liu, J.; Huang, Z.; Wang, P.; Zhao, G.; Li, Y.; Gao, Y.; Chen, S.; Fan, D. Convolutional Neural Network Assisted Optical Orbital Angular Momentum Identification of Vortex Beams. IEEE Access 2020, 8, 193801–193812. [Google Scholar] [CrossRef]
- Wang, Z.; Dedo, M.I.; Guo, K.; Zhou, K.; Shen, F.; Sun, Y.; Liu, S.; Guo, Z. Efficient Recognition of the Propagated Orbital Angular Momentum Modes in Turbulences with the Convolutional Neural Network. IEEE Photonics J. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Wu, H.; Chen, Z.; Pu, J. Recognition of Orbital Angular Momentum of Vortex Beams Based on Convolutional Neural Network and Multi-Objective Classifier. Photonics 2023, 10, 631. [Google Scholar] [CrossRef]
- Murtagh, F. Multilayer Perceptrons for Classification and Regression. Neurocomputing 1991, 2, 183–197. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ruffato, G.; Massari, M.; Romanato, F. Generation of High-Order Laguerre–Gaussian Modes by Means of Spiral Phase Plates. Opt. Lett. 2014, 39, 5094–5097. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Wang, C. Generation and Expansion of Laguerre–Gaussian Beams. J. Opt. 2022, 51, 910–926. [Google Scholar] [CrossRef]
- Heckenberg, N.R.; McDuff, R.; Smith, C.P.; White, A.G. Generation of Optical Phase Singularities by Computer-Generated Holograms. Opt. Lett. 1992, 17, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Ding, Y.; Liu, T.; Liu, Z.; Wu, H.; Ren, Y. Fragmental Optical Vortex for the Detection of Rotating Object Based on the Rotational Doppler Effect. Opt. Express 2022, 30, 47350–47360. [Google Scholar] [CrossRef]
- Bouchal, Z.; Celechovský, R. Mixed Vortex States of Light as Information Carriers. New J. Phys. 2004, 6, 131. [Google Scholar] [CrossRef]
- Lin, J.; Yuan, X.-C.; Tao, S.H.; Burge, R.E. Collinear Superposition of Multiple Helical Beams Generated by a Single Azimuthally Modulated Phase-Only Element. Opt. Lett. 2005, 30, 3266–3268. [Google Scholar] [CrossRef]
- Liu, X.; Huang, S.; Xie, W.; Pei, Z. Topological Charge Parallel Measurement Method for Optical Vortices Based on Computer-Generated Holography. J. Opt. Technol. 2022, 89, 94–100. [Google Scholar] [CrossRef]
- Lin, J.; Yuan, X.; Tao, S.H.; Burge, R.E. Synthesis of Multiple Collinear Helical Modes Generated by a Phase-Only Element. JOSA A 2006, 23, 1214–1218. [Google Scholar] [CrossRef]
- Li, Y.; Yu, L.; Zhang, Y. Influence of Anisotropic Turbulence on the Orbital Angular Momentum Modes of Hermite-Gaussian Vortex Beam in the Ocean. Opt. Express 2017, 25, 12203–12215. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Gao, C. Influences of Atmospheric Turbulence Effects on the Orbital Angular Momentum Spectra of Vortex Beams. Photonics Res. 2016, 4, B1–B4. [Google Scholar] [CrossRef]
- Tatarski, V.I. Wave Propagation in a Turbulent Medium; Courier Dover Publications: Mineola, NY, USA, 2016. [Google Scholar]
- Shirazi, M.I.; Khatir, S.; Boutchicha, D.; Wahab, M.A. Feature Extraction and Classification of Multiple Cracks from Raw Vibrational Responses of Composite Beams Using 1d-Cnn Network. Compos. Struct. 2023, 327, 117701. [Google Scholar] [CrossRef]
- Dai, Q.; Luo, Z.; Li, Z.; Lyu, S.; Xue, X.; Song, S.; Yu, S.; Huang, Y. Field-Based, Non-Destructive, and Rapid Detection of Pesticide Residues on Kumquat (Citrus Japonica) Surfaces Using Handheld Spectrometer and 1d-Resnet. Agronomy 2025, 15, 625. [Google Scholar] [CrossRef]
Network | l = 4 | l = ±4 | l = 1, 3, 5 |
---|---|---|---|
CNN | 93.25% | 88% | 76% |
MLP | 96% | 86.5% | 71.75% |
ResNet | 96% | 93% | 80.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Wang, H.; Yun, H.; Shi, Z.; Zhang, Z.; Cui, C.; Wu, D.; Lyu, X.; Zhao, Y. Research on Enhancing Target Recognition Rate Based on Orbital Angular Momentum Spectrum with Assistance of Neural Network. Photonics 2025, 12, 771. https://doi.org/10.3390/photonics12080771
Chen G, Wang H, Yun H, Shi Z, Zhang Z, Cui C, Wu D, Lyu X, Zhao Y. Research on Enhancing Target Recognition Rate Based on Orbital Angular Momentum Spectrum with Assistance of Neural Network. Photonics. 2025; 12(8):771. https://doi.org/10.3390/photonics12080771
Chicago/Turabian StyleChen, Guanxu, Hongyang Wang, Hao Yun, Zhanpeng Shi, Zijing Zhang, Chengshuai Cui, Di Wu, Xinran Lyu, and Yuan Zhao. 2025. "Research on Enhancing Target Recognition Rate Based on Orbital Angular Momentum Spectrum with Assistance of Neural Network" Photonics 12, no. 8: 771. https://doi.org/10.3390/photonics12080771
APA StyleChen, G., Wang, H., Yun, H., Shi, Z., Zhang, Z., Cui, C., Wu, D., Lyu, X., & Zhao, Y. (2025). Research on Enhancing Target Recognition Rate Based on Orbital Angular Momentum Spectrum with Assistance of Neural Network. Photonics, 12(8), 771. https://doi.org/10.3390/photonics12080771