Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication
Abstract
1. Introduction
2. High-Speed Communication Systems Based on the Micro-LED Transmitter
2.1. High-Bandwidth Micro-LED Transmitter
2.2. Advanced Modulation Schemes
2.3. High-Speed Communication Systems
2.3.1. Free Space
2.3.2. Underwater
2.3.3. Optical Fiber
2.4. Structured Micro-LED Array System
2.4.1. Technologies for Realizing Visible Light Positioning
2.4.2. Application of Visible Light Position
2.5. Summary of Micro-LEDs as Transmitters for VLC
3. GaN Micro-LED-Based Photodetectors
3.1. Historical Progress of GaN Micro-LED-Based Photodetectors
3.2. Bandwidth and Responsivity Characteristics of GaN Micro-LED-Based PDs and Micro-PDs
3.3. Multiple Applications Using GaN Micro-LED-Based Photodetectors in VLC
3.3.1. GaN Micro-LED-Based Photodetectors in High-Speed VLC
3.3.2. GaN Micro-LED-Based Photodetectors in On-Chip Communication and Other Versatile Applications
3.4. Summary of Micro-LED-Based Photodetectors in VLC
4. Conclusions
- The promotion of GaN-based high-bandwidth micro-LEDs will further enhance the development of VLC. The introduction of new substrates and the optimization of QWs will further shorten the carrier recombination lifetime and improve the modulation bandwidth of the micro-LED. The research on field-effect transistors, heterojunction memory devices, and perovskite solar cells can inform the bandwidth design of micro-LED through shared technological approaches such as band structure engineering, interface optimization, and multidimensional structural design [119,120,121]. For the design of devices, size, connection methods, and device structure are the main focuses of researchers. The future of the micro-LED needs to better balance the relationship between the modulation bandwidth and the optical power. High bandwidth combined with high optical power will further improve the data rate of VLC. In addition, the introduction of new fabrication processes will also improve the efficiency of micro-LED manufacturing. By simultaneously innovating in materials, structure, and manufacturing processes, it is possible to break through the limitations of bandwidth and optical power, achieving low-energy, high-speed communication performance to meet the increasing demand for data transmission.
- The improvement of micro-LED-based PDs can be divided into three parts. Firstly, the epitaxial optimization of high-performance micro-LED-based PDs featuring GaN-based MQW structures is significant. Through further meticulous optimization of the device architecture, it is feasible to fabricate PDs that simultaneously exhibit high responsivity and high bandwidth, thereby substantially augmenting the performance of these photodetectors across diverse applications. Some researchers achieve room-temperature broadband mid-infrared detection through vertical Schottky junction integration, thereby providing technical insights for the design of micro-LED-based PDs [122,123,124,125]. Secondly, the design of high-speed arrays of micro-LED-based PDs with GaN-based MQW structures must be meticulously optimized for MIMO-VLC systems. The large divergence angle of the LED causes the light to directly illuminate the adjacent PD, resulting in signal aliasing and a decrease in SNR. Furthermore, each pixel in the micro-LED array requires an independent driver, which restricts the high-density integration of micro-LED-based PDs. Therefore, the design of the micro-LED array must avoid optical crosstalk by precisely configuring the number, size, and spacing to ensure compatibility with high-speed LED arrays. This accomplishment will facilitate more efficient and dependable data transmission within VLC systems, thereby broadening the application fields of VLC in domains such as high-speed indoor communication networks and IoT.
- The integration of micro-LED-based PDs with GaN-based MQW structures and micro-LED light-emitting devices harbors substantial potential. By synergistically combining functions encompassing lighting, display, and communication, it is possible to realize sophisticated applications such as intelligent lighting systems and smart displays with multifunctional integration. This integration will not only confer enhanced convenience to people’s daily living experiences but also provide novel opportunities for the advancement of smart cities and other cognate fields.
Author Contributions
Funding
Conflicts of Interest
References
- You, X.; Wang, C.-X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 1–74. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Ndjiongue, A.R.; Ferreira, H.C. An overview of outdoor visible light communications. Trans. Emerg. Telecommun. Technol. 2018, 29, e3448. [Google Scholar] [CrossRef]
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Rajbhandari, S.; McKendry, J.J.; Herrnsdorf, J.; Chun, H.; Faulkner, G.; Haas, H.; Watson, I.M.; O’Brien, D.; Dawson, M.D. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 2017, 32, 023001. [Google Scholar] [CrossRef]
- Chow, C.-W.; Yeh, C.; Liu, Y.; Liu, Y. Improved modulation speed of LED visible light communication system integrated to main electricity network. Electron Lett. 2011, 47, 867–868. [Google Scholar] [CrossRef]
- Le Minh, H.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technol. Lett. 2009, 21, 1063–1065. [Google Scholar] [CrossRef]
- Qiu, P.; Cui, G.; Qian, Z.; Zhu, S.; Shan, X.; Zhao, Z.; Zhou, X.; Cui, X.; Tian, P. 4.0 Gbps visible light communication in a foggy environment based on a blue laser diode. Opt. Express 2021, 29, 14163–14173. [Google Scholar] [CrossRef]
- Qiu, P.; Zhu, S.; Jin, Z.; Zhou, X.; Cui, X.; Tian, P. Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs. Opt. Lett. 2022, 47, 317–320. [Google Scholar] [CrossRef]
- Lin, R.; Jin, Z.; Qiu, P.; Liao, Y.; Hoo, J.; Guo, S.; Cui, X.; Tian, P. High bandwidth series-biased green micro-LED array toward 6 Gbps visible light communication. Opt. Lett. 2022, 47, 3343–3346. [Google Scholar] [CrossRef]
- Jin, Z.; Yan, L.; Zhu, S.; Cui, X.; Tian, P. 10-Gbps visible light communication in a 10-m free space based on violet series-biased micro-LED array and distance adaptive pre-equalization. Opt. Lett. 2023, 48, 2026–2029. [Google Scholar] [CrossRef] [PubMed]
- Pezeshki, B.; Tselikov, A.; Kalman, R.; Afifi, E. Sub 1pJ/bit dense optical interconnects using microLEDs on CMOS transceiver ICs. In Proceedings of the SPIE OPTO 2023, San Francisco, CA, USA, 14 March 2023; p. 12441. [Google Scholar]
- Tian, P.; Qu, D.; Shen, D.; Sun, D.; Wang, Z.; Zhao, Z.; Fang, Z.; Cui, X. Correlation reconstruction based high-accuracy LED and micro-LED positioning. J. Light. Technol. 2023, 41, 5879–5884. [Google Scholar] [CrossRef]
- Stonehouse, M.; Blanchard, A.; Guilhabert, B.; Zhang, Y.; Gu, E.; Watson, I.; Herrnsdorf, J.; Dawson, M. Automated alignment in mask-free photolithography enabled by micro-LED arrays. Electronics Letters. 2021, 57, 721–723. [Google Scholar] [CrossRef]
- Lu, T.-W.; Huang, Y.; Lai, S.-Q.; Lin, S.-H.; Liu, S.-B.; Fan, X.-T.; Lu, Y.-J.; Lin, Y.; Chen, Z.; Wu, T.-Z. Full-duplex visible light communication system based on single blue mini-LED acting as transmitter and photodetector simultaneously. J. Light. Technol. 2023, 41, 2639–2649. [Google Scholar] [CrossRef]
- Ho, K.-T.; Chen, R.; Liu, G.; Shen, C.; Holguin-Lerma, J.; Al-Saggaf, A.A.; Ng, T.K.; Alouini, M.-S.; He, J.-H.; Ooi, B.S. 3.2 Gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector. Opt. Express 2018, 26, 3037–3045. [Google Scholar] [CrossRef]
- Liu, X.; Lin, R.; Chen, H.; Zhang, S.; Qian, Z.; Zhou, G.; Chen, X.; Zhou, X.; Zheng, L.; Liu, R. High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays. ACS Photonics 2019, 6, 3186–3195. [Google Scholar] [CrossRef]
- Liao, Y.; Shan, X.; Rao, Z.; Wang, G.; Lin, R.; Cui, X.; Xu, K.; Tian, P. Size-dependent characteristics of high-bandwidth photodetector based on GaN micro-LEDs and LEDs for high-speed visible light communication. J. Light. Technol. 2024, 42, 5902–5909. [Google Scholar] [CrossRef]
- Miyazaki, E.; Itami, S.; Araki, T. Using a light-emitting diode as a high-speed, wavelength selective photodetector. Rev. Sci. Instrum. 1998, 69, 3751–3754. [Google Scholar] [CrossRef]
- Kang, C.H.; Liu, G.; Lee, C.; Alkhazragi, O.; Wagstaff, J.M.; Li, K.-H.; Alhawaj, F.; Ng, T.K.; Speck, J.S.; Nakamura, S. Semipolar (20) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Appl. Phys. Express 2019, 13, 014001. [Google Scholar] [CrossRef]
- Lin, R.; Liu, X.; Zhou, G.; Qian, Z.; Cui, X.; Tian, P. InGaN micro-LED array enabled advanced underwater wireless optical communication and underwater charging. Adv. Opt. Mater. 2021, 9, 2002211. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Chang, Y.-H.; Lin, Y.; Liou, F.-J.; Hsu, Y.-C.; Song, J.; Choi, J.; Chow, C.-W.; Lin, C.-C.; et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 2020, 7, 2228–2235. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Aragon, A.; Oh, S.; Rishinaramangalam, A.; DenBaars, S.; Feezell, D. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 2018, 112, 041104. [Google Scholar] [CrossRef]
- Shan, X.; Wang, G.; Zhu, S.; Qiu, P.; Lin, R.; Wang, Z.; Yuan, Z.; Yan, Q.-a.; Cui, X.; Wang, J. Comparison of beyond 1 GHz c-plane freestanding and sapphire-substrate GaN-based micro-LEDs for high-speed visible light communication. J. Light. Technol. 2022, 41, 1480–1486. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Chen, C.-J.; Wang, L.; Fu, H.; Zhang, L.; Chen, K.-C.; Wu, M.-C.; Dong, Y.; Hao, Z. 1.3 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photonics Res. 2021, 9, 792–802. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Lu, X.; Wang, Z.; Qiu, P.; Cui, X.; Tian, P.; Wang, Q.; Zhang, G. Investigation of modulation bandwidth of InGaN green micro-LEDs by varying quantum barrier thickness. IEEE Trans. Electron Devices 2022, 69, 4298–4305. [Google Scholar] [CrossRef]
- Xu, F.; Jin, Z.; Tao, T.; Tian, P.; Wang, G.; Liu, X.; Zhi, T.; Yan, Q.-a.; Pan, D.; Xie, Z. C-plane blue micro-LED with 1.53 GHz bandwidth for high-speed visible light communication. IEEE Electron Device Lett. 2022, 43, 910–913. [Google Scholar] [CrossRef]
- Denier van der Gon, D.; Timmerman, D.; Matsude, Y.; Ichikawa, S.; Ashida, M.; Schall, P.; Fujiwara, Y. Size dependence of quantum efficiency of red emission from GaN:Eu structures for application in micro-LEDs. Opt. Lett. 2020, 45, 3973–3976. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, F.; Zhang, K.; Jiang, F.; Chan, K.-W.; Kwok, H.-S.; Liu, Z. Analysis of size dependence and the behavior under ultrahigh current density injection condition of GaN-based micro-LEDs with pixel size down to 3 μm. J. Phys. D Appl. Phys. 2022, 55, 315107. [Google Scholar] [CrossRef]
- Carreira, J.F.C.; Xie, E.; Bian, R.; Herrnsdorf, J.; Haas, H.; Gu, E.; Strain, M.J.; Dawson, M.D. Gigabit per second visible light communication based on AlGaInP red micro-LED micro-transfer printed onto diamond and glass. Opt. Express 2020, 28, 12149–12156. [Google Scholar] [CrossRef]
- Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R.V.; White, I.H. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res. 2017, 5, A35–A43. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Peng, C.-Y.; Miao, W.-C.; Chiang, H.; Lee, T.-Y.; Chang, Y.-H.; Singh, K.J.; Iida, Z.D.; Horng, R.-H.; Chow, C.-W. High-efficiency InGaN red micro-LEDs for visible light communication. Photonics Res. 2022, 10, 1978–1986. [Google Scholar] [CrossRef]
- Dinh, D.V.; Quan, Z.; Roycroft, B.; Parbrook, P.J.; Corbett, B. GHz bandwidth semipolar (112) InGaN/GaN light-emitting diodes. Opt. Lett. 2016, 41, 5752–5755. [Google Scholar] [CrossRef]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Rishinaramangalam, A.; Feezell, D. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE Electron Device Lett. 2018, 39, 520–523. [Google Scholar] [CrossRef]
- Rajabi, K.; Wang, J.; Jin, J.; Xing, Y.; Wang, L.; Han, Y.; Sun, C.; Hao, Z.; Luo, Y.; Qian, K. Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design. Opt. Express 2018, 26, 24985–24991. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Chen, S.; Li, G.; Zou, P.; Zhang, J.; Hu, J.; Zhang, J.; He, Z.; Yu, S.; Jiang, F.; et al. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication. Photonics Res. 2021, 9, 1581–1591. [Google Scholar] [CrossRef]
- Huang, Z.; Tao, R.; Li, D.; Rao, Z.; Yuan, Z.; Yuan, Y.; Wang, Q.; Tian, P.; Shen, B.; Wang, X. Improvement in modulation bandwidth of micro-LED arrays based on low-temperature-interlayer approach. IEEE Photonics Technol. Lett. 2022, 34, 675–678. [Google Scholar] [CrossRef]
- Huang, Z.; Tao, R.; Li, D.; Yuan, Z.; Sheng, S.; Wang, T.; Li, T.; Chen, Z.; Yuan, Y.; Kang, J.; et al. Excavating the communication performance in GaN-based green micro-LEDs: Modular-architectured p-type region. Adv. Photonics Res. 2023, 4, 2200076. [Google Scholar] [CrossRef]
- Huang, Z.; Tao, R.; Li, D.; Rao, Z.; Yuan, Z.; Li, T.; Chen, Z.; Yuan, Y.; Kang, J.; Liang, Z.; et al. Transmission data rate improvement by InGaN barriers in GaN-based blue micro-LEDs for visible light communication. Opt. Lett. 2022, 47, 4235–4238. [Google Scholar] [CrossRef]
- Lu, T.; Lai, S.; Dai, Y.; Liu, S.; Lee, T.Y.; Lu, Y.; Liao, X.; Su, Y.; Wu, C.; Kuo, H.C.; et al. Improving modulation bandwidth and detection performance of green micro-LEDs with pre-strained structure at positive bias. IEEE Electron Device Lett. 2024, 45, 332–335. [Google Scholar] [CrossRef]
- Lei, L.; Zhu, Z.; Wei, J.; Wang, W.; Li, G. Improved modulation bandwidth of c-plane micro-LED arrays by varying Si doping in the quantum barrier. IEEE Trans. Electron Devices 2024, 71, 1969–1973. [Google Scholar] [CrossRef]
- Gao, H.; Yan, F.; Zhang, Y.; Li, J.; Zeng, Y.; Wang, J. Growth of nonpolar a-plane GaN on nano-patterned r-plane sapphire substrates. Appl. Surf. Sci. 2009, 255, 3664–3668. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Hao, Z.; Luo, Y.; Sun, C.; Xiong, B.; Han, Y.; Wang, J.; Li, H.; Gan, L. Bandwidth analysis of high-speed InGaN micro-LEDs by an equivalent circuit model. IEEE Electron Device Lett. 2023, 44, 785–788. [Google Scholar] [CrossRef]
- Huang, W.-T.; Peng, C.-Y.; Chiang, H.; Huang, Y.-M.; Singh, K.J.; Lee, W.-B.; Chow, C.-W.; Chen, S.-C.; Kuo, H.-C. Toward high-bandwidth yellow-green micro-LEDs utilizing nanoporous distributed Bragg reflectors for visible light communication. Photonics Res. 2022, 10, 1810–1818. [Google Scholar] [CrossRef]
- McKendry, J.J.; Massoubre, D.; Zhang, S.; Rae, B.R.; Green, R.P.; Gu, E.; Henderson, R.K.; Kelly, A.; Dawson, M.D. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. J. Light. Technol. 2011, 30, 61–67. [Google Scholar] [CrossRef]
- Rao, Z.; Shan, X.; Wang, G.; Jin, Z.; Lin, R.; Cui, X.; Liu, R.; Xu, K.; Tian, P. 10.5 Gbps visible light communication systems based on c-plane freestanding GaN micro-LED. J. Light. Technol. 2024, 42, 4360–4364. [Google Scholar] [CrossRef]
- Lan, H.-Y.; Tseng, I.-C.; Lin, Y.-H.; Lin, G.-R.; Huang, D.-W.; Wu, C.-H. High-speed integrated micro-LED array for visible light communication. Opt. Lett. 2020, 45, 2203–2206. [Google Scholar] [CrossRef]
- Yao, S.; Chai, H.; Lei, L.; Zhu, Z.; Li, G.; Wang, W. Parallel micro-LED arrays with a high modulation bandwidth for a visible light communication. Opt. Lett. 2022, 47, 3584–3587. [Google Scholar] [CrossRef]
- Chai, H.; Yao, S.; Lei, L.; Zhu, Z.; Li, G.; Wang, W. High-speed parallel micro-LED arrays on Si substrates based on via-holes structure for visible light communication. IEEE Electron Device Lett. 2022, 43, 1279–1282. [Google Scholar] [CrossRef]
- Zhu, Z.; Lei, L.; Lin, T.; Li, L.; Lin, Z.; Jiang, H.; Li, G.; Wang, W. Embedded electrode micro-LEDs with high modulation bandwidth for visible light communication. IEEE Trans. Electron Devices 2023, 70, 588–593. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, W.; Liu, P.; Wang, C.; Lan, J.; Lei, L.; Sun, L.; Hu, X.; Lin, T.; Liu, P.; et al. Demonstration of graphene/GaN-based micro-LEDs arrays for visible light communication. IEEE Trans. Electron Devices 2024, 71, 3090–3095. [Google Scholar] [CrossRef]
- Xie, M.; Hu, F.; Ma, C.; Jiang, Y.; Shi, Z.; Gao, X.; Jia, B.; Yuan, J.; Zhu, H.; Chi, N.; et al. 580-nm-thick vertical-structure light-emitting diode for visible light communication. Appl. Phys. Lett. 2022, 120, 181109. [Google Scholar] [CrossRef]
- Yu, H.; Memon, M.H.; Jia, H.; Ding, Y.; Xiao, S.; Liu, X.; Kang, Y.; Wang, D.; Zhang, H.; Fang, S.; et al. Deep-ultraviolet LEDs incorporated with SiO2-based microcavities toward high-speed ultraviolet light communication. Adv. Opt. Mater. 2022, 10, 2201738. [Google Scholar] [CrossRef]
- McKendry, J.J.; Green, R.P.; Kelly, A.; Gong, Z.; Guilhabert, B.; Massoubre, D.; Gu, E.; Dawson, M.D. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photonics Technol. Lett. 2010, 22, 1346–1348. [Google Scholar] [CrossRef]
- Liao, C.-L.; Ho, C.-L.; Chang, Y.-F.; Wu, C.-H.; Wu, M.-C. High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth. IEEE Electron Device Lett. 2014, 35, 563–565. [Google Scholar] [CrossRef]
- Pezeshki, B.; Tselikov, A.; Kalman, R.; Danesh, C. Wide and parallel LED-based optical links using multi-core fiber for chip-to-chip communications. In Proceedings of the Optical Fiber Communication Conference (OFC) 2021, Washington, DC, USA, 6–11 June 2021; p. F3A.1. [Google Scholar]
- Zhu, S.; Qiu, P.; Shan, X.; Lin, R.; Wang, Z.; Jin, Z.; Cui, X.; Zhang, G.; Tian, P. High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing. Photonics Res. 2022, 10, 1892–1899. [Google Scholar] [CrossRef]
- Lu, T.; Dai, Y.; Lee, T.-Y.; Zheng, X.; Chen, G.; Su, Y.; Chen, Z.; Kuo, H.-C.; Wu, T. Advancing long-wavelength InGaN micro-LEDs as wavelength-selective detectors for white-light communication. ACS Photonics 2024, 11, 3390–3400. [Google Scholar] [CrossRef]
- Jin, Z.; Lin, R.; Liu, X.; Sun, D.; Liu, B.; Tao, T.; Xu, F.; Fang, Z.; Cui, X.; Tian, P. Green micro-LED with a bandwidth exceeding 2 GHz for 9-Gbps visible light communication based on SNR gap-dependent bit and power loading. J. Light. Technol. 2025, 43, 472–480. [Google Scholar] [CrossRef]
- Beguni, C.; Căilean, A.-M.; Avătămăniței, S.-A.; Dimian, M. Analysis and experimental investigation of the light dimming effect on automotive visible light communications performances. Sensors 2021, 21, 4446. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Butala, P.M.; Elgala, H.; Little, T.D.C. SVD-VLC: A novel capacity maximizing VLC MIMO system architecture under illumination constraints. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 1087–1092. [Google Scholar]
- Ijaz, M.; Tsonev, D.; McKendry, J.J.D.; Xie, E.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Gu, E.; Dawson, M.D.; Brien, D.O.; et al. Experimental proof-of-concept of optical spatial modulation OFDM using micro LEDs. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 1338–1343. [Google Scholar]
- Xie, E.; Bian, R.; He, X.; Islim, M.S.; Chen, C.; McKendry, J.J.; Gu, E.; Haas, H.; Dawson, M.D. Over 10 Gbps VLC for long-distance applications using a GaN-based series-biased micro-LED array. IEEE Photonics Technol. Lett. 2020, 32, 499–502. [Google Scholar] [CrossRef]
- Maclure, D.M.; Chen, C.; McKendry, J.J.; Xie, E.; Hill, J.; Herrnsdorf, J.; Gu, E.; Haas, H.; Dawson, M.D. Hundred-meter Gb/s deep ultraviolet wireless communications using AlGaN micro-LEDs. Opt. Express 2022, 30, 46811–46821. [Google Scholar] [CrossRef]
- Chun, H.; Rajbhandari, S.; Faulkner, G.; Tsonev, D.; Xie, E.; McKendry, J.J.D.; Gu, E.; Dawson, M.D.; O'Brien, D.C.; Haas, H. LED based wavelength division multiplexed 10 Gb/s visible light communications. J. Light. Technol. 2016, 34, 3047–3052. [Google Scholar] [CrossRef]
- Tian, P.; Chen, H.; Wang, P.; Liu, X.; Chen, X.; Zhou, G.; Zhang, S.; Lu, J.; Qiu, P.; Qian, Z.; et al. Absorption and scattering effects of Maalox, chlorophyll, and sea salt on a micro-LED-based underwater wireless optical communication [Invited]. Chin. Opt. Lett. 2019, 17, 100010. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron 2020, 73, 100274. [Google Scholar] [CrossRef]
- Tian, P.; Liu, X.; Yi, S.; Huang, Y.; Zhang, S.; Zhou, X.; Hu, L.; Zheng, L.; Liu, R. High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express 2017, 25, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, L.; Wang, L.; Chen, C.-J.; Pepe, A.; Liu, X.; Chen, K.-C.; Wu, M.-C.; Dong, Y.; Wang, L. 2 Gbps/3 m air–underwater optical wireless communication based on a single-layer quantum dot blue micro-LED. Opt. Lett. 2020, 45, 2616–2619. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, G.N.; Bian, R.; McKendry, J.J.; Cheng, C.; Xie, E.; He, X.; Yang, G.; Islim, M.S.; Purwita, A.A.; Gu, E. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays. IEEE Photonics J. 2020, 12, 7901210. [Google Scholar] [CrossRef]
- Zhu, S.; Qiu, P.; Shan, X.; Wang, Z.; Lin, R.; Cui, X.; Zhang, G.; Tian, P. Micro-LED based double-sided emission display and cross-medium communication. IEEE Photonics J. 2022, 14, 7326705. [Google Scholar] [CrossRef]
- Wade, M.; Anderson, E.; Ardalan, S.; Bae, W.; Beheshtian, B.; Buchbinder, S.; Chang, K.; Chao, P.; Eachempatti, H.; Frey, J. An error-free 1 Tbps WDM optical I/O chiplet and multi-wavelength multi-port laser. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 6–11 June 2021; p. F3C.6. [Google Scholar]
- McKendry, J.; Zhang, S.; Watson, S.; Herrnsdorf, J.; Massoubre, D.; Cogman, A.; Guilhabert, B.; Laurand, N.; Gu, E.; Henderson, R. Micro-pixellated light-emitting diode arrays: Novel sources for data transmission over POF. In Proceedings of the 21st International Conference on Plastic Optical Fibers 2012, Atlanta, GA, USA, 10–12 September 2012. [Google Scholar]
- Li, X.; Bamiedakis, N.; Wei, J.; McKendry, J.; Xie, E.; Ferreira, R.; Gu, E.; Dawson, M.; Penty, R.; White, I. 6.25 Gb/s POF link using GaN μLED arrays and optically generated pulse amplitude modulation. In Proceedings of the CLEO: Science and Innovations 2015, San Jose, CA, USA, 10–15 May 2015; p. STu4F.7. [Google Scholar]
- Pezeshki, B.; Khoeini, F.; Tselikov, A.; Kalman, R.F.; Danesh, C.; Afifi, E. LED-array based optical interconnects for chip-to-chip communications with integrated CMOS drivers, detectors, and circuitry. In Proceedings of the Optical Interconnects XXII 2022, 1200707, San Francisco, CA, USA, 5 March 2022; pp. 31–34. [Google Scholar]
- Pezeshki, B.; Rangarajan, S.; Tselikov, A.; Afifi, E.; Huang, I.; Pepper, J.; Zou, S.; Rourke, H.; Pocock, R.; Fikouras, A.; et al. 304 channel MicroLED based CMOS transceiver IC with aggregate 1 Tbps and sub-pJ per bit capability. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) 2024, San Diego, CA, USA, 24–28 March 2024; pp. 1–3. [Google Scholar]
- Zhang, L.; Wang, Z.; Wei, Z.; Chen, C.; Wei, G.; Fu, H.; Dong, Y. Towards a 20 Gbps multi-user bubble turbulent NOMA UOWC system with green and blue polarization multiplexing. Opt. Express 2020, 28, 31796–31807. [Google Scholar] [CrossRef]
- Maclure, D.M.; McKendry, J.J.; Islim, M.S.; Xie, E.; Chen, C.; Sun, X.; Liang, X.; Huang, X.; Abumarshoud, H.; Herrnsdorf, J. 10 Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs. Photonics Res. 2022, 10, 516–523. [Google Scholar] [CrossRef]
- Li, X.; Bamiedakis, N.; McKendry, J.J.; Xie, E.; Ferreira, R.; Gu, E.; Dawson, M.D.; Penty, R.V.; White, I.H. 11 Gb/s WDM transmission over SI-POF using violet, blue and green μLEDs. In Proceedings of the Optical Fiber Communication Conference 2016, Anaheim, CA, USA, 20–22 March 2016; p. Tu2C.5. [Google Scholar]
- Li, X.; Bamiedakis, N.; Wei, J.; McKendry, J.J.D.; Xie, E.; Ferreira, R.; Gu, E.; Dawson, M.D.; Penty, R.V.; White, I.H. μLED-based single-wavelength bi-directional POF link with 10 Gb/s aggregate data rate. J. Light. Technol. 2015, 33, 3571–3576. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Liu, X.; Yi, S.; Zhou, X.; Gu, E.; Huang, K.; Zheng, L.; Liu, R.; Cui, X. A GaN micro-LED based underwater wireless optical communication subjected to sea salt, Maalox and Chlorophyll. In Proceedings of the 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Shenzhen, China, 23–25 October 2018; pp. 1–3. [Google Scholar]
- Zhang, S.; Du, P.; Yang, H.; Zhang, R.; Chen, C.; Alphones, A. Recent progress in visible light positioning and communication systems. IEICE Trans. Commun. 2023, E106-B, 84–100. [Google Scholar]
- Zare, M.; Battulwar, R.; Seamons, J.; Sattarvand, J. Applications of wireless indoor positioning systems and technologies in underground mining: A review. Min. Metall. Explor. 2021, 38, 2307–2322. [Google Scholar] [CrossRef]
- Ting, S.; Kwok, S.; Tsang, A.H.; Ho, G.T. The study on using passive RFID tags for indoor positioning. Int. J. Eng. Bus. Manag. 2011, 3, 8. [Google Scholar] [CrossRef]
- Wang, Y.T.; Li, J.; Zheng, R.; Zhao, D. ARABIS: An asynchronous acoustic indoor positioning system for mobile devices. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- Herrnsdorf, J.; Strain, M.J.; Gu, E.; Dawson, M.D. Concept of a GaN-LED-based positioning system using structured illumination. In Proceedings of the 2015 IEEE Photonics Conference (IPC), Reston, VA, USA, 4–8 October 2015; pp. 28–29. [Google Scholar]
- Hyeonsoo, P.; Seunghoon, H.; Lee, M. Structured Light Projector and Electronic Device Including the Same. US Patent 11,067,877, 20 July 2021. [Google Scholar]
- Stonehouse, M.; Zhang, Y.; Guilhabert, B.; Watson, I.; Gu, E.; Herrnsdorf, J.; Dawson, M. Digital illumination in microscale direct-writing photolithography: Challenges and trade-offs. In Proceedings of the 2018 IEEE British and Irish Conference on Optics and Photonics (BICOP), London, UK, 12–14 December 2018; pp. 1–4. [Google Scholar]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Z.; Lu, Z.; Li, G. High responsivity and low dark current nonpolar GaN-based ultraviolet photo-detectors. J. Mater. Chem. C 2018, 6, 6641–6646. [Google Scholar] [CrossRef]
- Kong, D.; Zhou, Y.; Chai, J.; Chen, S.; Chen, L.; Li, L.; Lin, T.; Wang, W.; Li, G. Recent progress in InGaN-based photodetectors for visible light communication. J. Mater. Chem. C 2022, 10, 14080–14090. [Google Scholar] [CrossRef]
- Chow, Y.C.; Lee, C.; Wong, M.S.; Wu, Y.-R.; Nakamura, S.; DenBaars, S.P.; Bowers, J.E.; Speck, J.S. Dependence of carrier escape lifetimes on quantum barrier thickness in InGaN/GaN multiple quantum well photodetectors. Opt. Express 2020, 28, 23796–23805. [Google Scholar] [CrossRef]
- Li, D.; Sun, X.; Song, H.; Li, Z.; Chen, Y.; Jiang, H.; Miao, G. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 2012, 24, 845–849. [Google Scholar] [CrossRef]
- Yan, L.; Jin, Z.; Lin, R.; Lu, X.; Shan, X.; Zhu, S.; Fang, Z.; Cui, X.; Tian, P. InGaN micro-LED array with integrated emission and detection functions for color detection application. Opt. Lett. 2023, 48, 2861–2864. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, Z.; Lin, X.; Shen, C.; Wang, X.; Zhang, J.; Wang, G.; Jiang, F.; Chi, N. 15.26Gb/s Si-substrate GaN high-speed visible light photodetector with super-lattice structure. Opt. Express 2023, 31, 33064–33076. [Google Scholar] [CrossRef]
- Giustiniano, D.; Tippenhauer, N.O.; Mangold, S. Low-complexity visible light networking with LED-to-LED communication. In Proceedings of the 2012 IFIP Wireless Days, Dublin, Ireland, 21–23 November 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Chun, H.; Rajbhandari, S.; Faulkner, G.; Tsonev, D.; Haas, H.; O’Brien, D. Demonstration of a bi-directional visible light communication with an overall sum-rate of 110 Mb/s using LEDs as emitter and detector. In Proceedings of the 2014 IEEE Photonics Conference, San Diego, CA, USA, 12–16 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 132–133. [Google Scholar]
- Stepniak, G.; Kowalczyk, M.; Maksymiuk, L.; Siuzdak, J. Transmission beyond 100 Mbit/s using LED both as a transmitter and receiver. IEEE Photonics Technol. Lett. 2015, 27, 2067–2070. [Google Scholar] [CrossRef]
- Shi, Z.; Fu, K.; Gao, X.; Jiang, Y.; Wang, Y. Simultaneous emission–detection operation of vertical-structure LED. Jpn. J. Appl. Phys. 2020, 59, 030903. [Google Scholar] [CrossRef]
- Alkhazragi, O.; Kang, C.H.; Kong, M.; Liu, G.; Lee, C.; Li, K.-H.; Zhang, H.; Wagstaff, J.M.; Alhawaj, F.; Ng, T.K. 7.4-Gbit/s visible-light communication utilizing wavelength-selective semipolar micro-photodetector. IEEE Photonics Technol. Lett. 2020, 32, 767–770. [Google Scholar] [CrossRef]
- Zhou, G.; Lin, R.; Qian, Z.; Zhou, X.; Shan, X.; Cui, X.; Tian, P. GaN-based micro-LEDs and detectors defined by current spreading layer: Size-dependent characteristics and their multifunctional applications. J. Phys. D Appl. Phys. 2021, 54, 335104. [Google Scholar] [CrossRef]
- Shi, J.; Xu, Z.; Niu, W.; Li, D.; Wu, X.; Li, Z.; Zhang, J.; Shen, C.; Wang, G.; Wang, X. Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10 Gbps visible light communication. Photonics Res. 2022, 10, 2394–2404. [Google Scholar] [CrossRef]
- Alshehri, B.; Dogheche, K.; Belahsene, S.; Ramdane, A.; Patriarche, G.; Decoster, D.; Dogheche, E. Dynamic characterization of III-nitride-based high-speed photodiodes. IEEE Photonics J. 2017, 9, 6803107. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Liou, F.-J.; Gunawan, W.H.; Chow, C.-W.; Liu, Y.; Kuo, H.-C.; Yeh, C.-H. High bandwidth semipolar (20-21) μ-LED serving as photo-receiver for visible light communication. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Chang, Y.-H.; Hsu, T.-C.; Liou, F.-J.; Chow, C.-W.; Liu, Y.; Kuo, H.-C.; Yeh, C.-H.; Yang, P.-H. High-bandwidth InGaN/GaN semipolar micro-LED acting as a fast photodetector for visible light communications. Opt. Express 2021, 29, 37245–37252. [Google Scholar] [CrossRef]
- Liao, Y.; Lin, R.; Tian, P. High-bandwidth micro-LED serving as photodetector toward 10-Gbps visible light communication. In Proceedings of the 2023 20th China International Forum on Solid State Lighting & 2023 9th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS), Xiamen, China, 27–30 November 2023; pp. 443–446. [Google Scholar]
- Niu, W.; Shi, J.; Xu, Z.; Li, D.; Xiao, W.; Wang, G.; Zhang, J.; He, Z.; Shen, C.; Chi, N. 8.205-Gbit/s visible light communication utilizing 4 × 4 Si-substrate μLED-based photodetector array. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar]
- Ai, J.; Zhang, Z.; Deng, T.; Shen, D.; Xiao, Y.; Jin, Z.; Ren, T.; Cui, X.; Tian, P. 15.64 Gbps high-speed visible light communication and multiple-user secure communication employing red GaN micro-LED based semi-transparent photodetector. J. Light. Technol. 2025, 1–8. [Google Scholar] [CrossRef]
- Li, K.H.; Fu, W.Y.; Cheung, Y.F.; Wong, K.K.Y.; Wang, Y.; Lau, K.M.; Choi, H.W. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 2018, 5, 564–569. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, Z.; Fu, J.; Shi, F.; Yan, J.; Fu, K.; Zhu, H.; Wang, Y. Asymmetric-absorption-induced spectral redshift in a monolithic III-nitride on-chip system. Opt. Express 2024, 32, 18193–18200. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhu, S.; Qiu, P.; Qian, Z.; Lin, R.; Wang, Z.; Cui, X.; Liu, R.; Tian, P. Multifunctional ultraviolet-C micro-LED with monolithically integrated photodetector for optical wireless communication. J. Light. Technol. 2021, 40, 490–498. [Google Scholar] [CrossRef]
- Shi, F.; Zhang, H.; Jiang, C.; Fu, K.; Wang, L.; Qi, Z.; Sun, Z.; Fang, L.; Zhu, H.; Yan, J.; et al. Collinear optical links based on a GaN-integrated chip for fiber-optic acoustic detection. Opt. Lett. 2024, 49, 169–172. [Google Scholar] [CrossRef]
- Yan, J.; Fang, L.; Yan, Y.; Sun, Z.; Shi, F.; Shi, Z.; Wang, Y. Large-sized light-emitting diode integrated with a thermopile for on-chip temperature and power monitoring. Opt. Lett. 2024, 49, 630–633. [Google Scholar] [CrossRef]
- Memon, M.H.; Yu, H.; Luo, Y.; Kang, Y.; Chen, W.; Li, D.; Luo, D.; Xiao, S.; Zuo, C.; Gong, C.; et al. A three-terminal light emitting and detecting diode. Nat. Electron 2024, 7, 279–287. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, Y.; Zhang, S.; Wen, Q.; Jiang, H. Polarization engineered InGaN/GaN visible-light photodiodes featuring high responsivity, bandpass response, and high speed. J. Mater. Chem. C 2021, 9, 12273–12280. [Google Scholar] [CrossRef]
- Lv, Z.; Liao, Z.; Jiang, H. InGaN/GaN visible-light heterojunction phototransistor featuring high responsivity, high speed, and bias-controlled wavelength-selectivity. IEEE Electron Device Lett. 2021, 42, 1362–1365. [Google Scholar] [CrossRef]
- Chai, J.; Kong, D.; Chen, S.; Chen, L.; Wang, W.; Li, G. High responsivity and high speed InGaN-based blue-light photodetectors on Si substrates. RSC Adv. 2021, 11, 25079–25083. [Google Scholar] [CrossRef]
- Nisar, S.; Dastgeer, G.; Zafar, M.S.; Zulfiqar, M.W.; Amina, M.; Rabani, I.; Iqbal, M.Z. Optimizing light sensing capabilities of WSe2 FETs through chemical modulation of carrier dynamics. Opt. Mater. 2025, 158, 116489. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Rasheed, A.; Akbar, K.; Chavan, V.D.; Kim, D.-k.; Wabaidur, S.M.; Zulfiqar, M.W.; Eom, J. Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 2024, 119, 109106. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Zulfiqar, M.W.; Eom, J.; Imran, M.; Akbar, K. A review on recent progress and challenges in high-efficiency perovskite solar cells. Nano Energy 2024, 132, 110401. [Google Scholar] [CrossRef]
- Wu, D.; Mo, Z.; Li, X.; Ren, X.; Shi, Z.; Li, X.; Zhang, L.; Yu, X.; Peng, H.; Zeng, L.; et al. Integrated mid-infrared sensing and ultrashort lasers based on wafer-level Td-WTe2 Weyl semimetal. Appl. Phys. Rev. 2024, 11, 041401. [Google Scholar] [CrossRef]
- Zeng, L.; Wu, D.; Jie, J.; Ren, X.; Hu, X.; Lau, S.P.; Chai, Y.; Tsang, Y.H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412. [Google Scholar] [CrossRef]
- Wu, D.; Guo, C.; Zeng, L.; Ren, X.; Shi, Z.; Wen, L.; Chen, Q.; Zhang, M.; Li, X.J.; Shan, C.-X.; et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 2023, 12, 5. [Google Scholar] [CrossRef]
- Zeng, L.; Han, W.; Ren, X.; Li, X.; Wu, D.; Liu, S.; Wang, H.; Lau, S.P.; Tsang, Y.H.; Shan, C.-X.; et al. Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal. Nano Lett. 2023, 23, 8241–8248. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Ai, J.; Deng, T.; Ruan, Y.; Sun, D.; Liao, Y.; Cui, X.; Tian, P. Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication. Photonics 2025, 12, 730. https://doi.org/10.3390/photonics12070730
Xu H, Ai J, Deng T, Ruan Y, Sun D, Liao Y, Cui X, Tian P. Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication. Photonics. 2025; 12(7):730. https://doi.org/10.3390/photonics12070730
Chicago/Turabian StyleXu, Handan, Jiakang Ai, Tianlin Deng, Yuandong Ruan, Di Sun, Yue Liao, Xugao Cui, and Pengfei Tian. 2025. "Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication" Photonics 12, no. 7: 730. https://doi.org/10.3390/photonics12070730
APA StyleXu, H., Ai, J., Deng, T., Ruan, Y., Sun, D., Liao, Y., Cui, X., & Tian, P. (2025). Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication. Photonics, 12(7), 730. https://doi.org/10.3390/photonics12070730