Singular Value Decomposition-Assisted Holographic Generation of High-Quality Cylindrical Vector Beams Through Few-Mode Fibers
Abstract
1. Introduction
2. Methods
2.1. Experimental Setup
2.2. TM Analysis and Hologram Generation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vellekoop, I.M.; Mosk, A. Focusing Coherent Light through Opaque Strongly Scattering Media. Opt. Lett. 2007, 32, 2309–2311. [Google Scholar] [CrossRef] [PubMed]
- Vellekoop, I.M.; Lagendijk, A.; Mosk, A. Exploiting Disorder for Perfect Focusing. Nat. Photonics 2010, 4, 320–322. [Google Scholar] [CrossRef]
- Mosk, A.P.; Lagendijk, A.; Lerosey, G.; Fink, M. Controlling Waves in Space and Time for Imaging and Focusing in Complex Media. Nat. Photonics 2012, 6, 283–292. [Google Scholar] [CrossRef]
- Cao, N.; Zhang, L.; Mi, S.; Chew, K.-H.; Chen, R.-P. Flexible Manipulation of Polarization Conversion and Compact Generation of Multiple Beams with Desired Polarization States through a Highly Anisotropic Scattering Medium. Laser Phys. Lett. 2025, 22, 046001. [Google Scholar] [CrossRef]
- Qi, B.; Shen, L.; Chew, K.-H.; Chen, R.-P. Vectorial Manipulation of High-Resolution Focusing Optical Field through a Scattering Medium. Photonics 2022, 9, 737. [Google Scholar] [CrossRef]
- Boniface, A.; Dong, J.; Gigan, S. Non-Invasive Focusing and Imaging in Scattering Media with a Fluorescence-Based Transmission Matrix. Nat. Commun. 2020, 11, 6154. [Google Scholar] [CrossRef] [PubMed]
- Psaltis, D.; Moser, C. Imaging with Multimode Fibers. Opt. Photonics News 2016, 27, 24–31. [Google Scholar] [CrossRef]
- Caravaca-Aguirre, A.M.; Piestun, R. Single Multimode Fiber Endoscope. Opt. Express 2017, 25, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Jákl, P.; Šiler, M.; Ježek, J.; Cifuentes, Á.; Trägårdh, J.; Zemánek, P.; Čižmár, T. Endoscopic Imaging Using a Multimode Optical Fibre Calibrated with Multiple Internal References. Photonics 2022, 9, 37. [Google Scholar] [CrossRef]
- Mi, S.; Chen, Y.; Gao, J.; Wang, G.; Chew, K.-H.; Chen, R.-P. Dynamic Manipulation of Orthogonal Polarization Components in a High-Resolution Twisted Vector Light Field with a Highly Scattering Medium. Opt. Lasers Eng. 2024, 176, 108069. [Google Scholar] [CrossRef]
- Cifuentes, A.; Pikálek, T.; Ondráčková, P.; Amezcua-Correa, R.; Antonio-Lopez, J.E.; Čižmár, T.; Trägårdh, J. Polarization-Resolved Second-Harmonic Generation Imaging through a Multimode Fiber. Optica 2021, 8, 1065–1074. [Google Scholar] [CrossRef]
- Xiong, W.; Hsu, C.W.; Bromberg, Y.; Antonio-Lopez, J.E.; Amezcua Correa, R.; Cao, H. Complete Polarization Control in Multimode Fibers with Polarization and Mode Coupling. Light Sci. Appl. 2018, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Lamb, E.S.; Kremp, T.; DiGiovanni, D.J.; Westbrook, P.S. Polarization-Resolved Transmission Matrices of Specialty Optical Fibers. Rev. Sci. Instrum. 2024, 95, 123705. [Google Scholar] [CrossRef] [PubMed]
- Popoff, S.; Lerosey, G.; Fink, M.; Boccara, A.C.; Gigan, S. Controlling Light through Optical Disordered Media: Transmission Matrix Approach. New J. Phys. 2011, 13, 123021. [Google Scholar] [CrossRef]
- Plöschner, M.; Tyc, T.; Čižmár, T. Seeing through Chaos in Multimode Fibres. Nat. Photonics 2015, 9, 529–535. [Google Scholar] [CrossRef]
- Gobé, B.; Saucourt, J.; Shpakovych, M.; Helbert, D.; Desfarges-Berthelemot, A.; Kermene, V. Retrieving the Complex Transmission Matrix of a Multimode Fiber by Machine Learning for 3D Beam Shaping. J. Light. Technol. 2024, 42, 4681–4688. [Google Scholar] [CrossRef]
- Kurekci, S.; Kahraman, S.S.; Yuce, E. Single-Pixel Multimode Fiber Spectrometer via Wavefront Shaping. ACS Photonics 2023, 10, 2488–2493. [Google Scholar] [CrossRef]
- Cifuentes, A.; Trägårdh, J. A Method for Single Particle Tracking through a Multimode Fiber. Opt. Express 2022, 30, 36055–36064. [Google Scholar] [CrossRef] [PubMed]
- Trägårdh, J.; Pikálek, T.; Šerỳ, M.; Meyer, T.; Popp, J.; Čižmár, T. Label-Free CARS Microscopy through a Multimode Fiber Endoscope. Opt. Express 2019, 27, 30055–30066. [Google Scholar] [CrossRef] [PubMed]
- Turtaev, S.; Leite, I.T.; Altwegg-Boussac, T.; Pakan, J.M.; Rochefort, N.L.; Čižmár, T. High-Fidelity Multimode Fibre-Based Endoscopy for Deep Brain in Vivo Imaging. Light Sci. Appl. 2018, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, A.; Trägårdh, J.; Pikálek, T.; Ondráčková, P.; Amezcua-Correa, R.; Antonio-Lopez, J.E.; Čižmár, T. Excitation Polarization Resolved Second Harmonic Generation Microscopy Through a Multimode Optical Fiber. In Proceedings of the Novel Techniques in Microscopy, Washington, DC, USA, 12–16 April 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. NTh1C-3. [Google Scholar]
- Rothe, S.; Radner, H.; Koukourakis, N.; Czarske, J.W. Transmission Matrix Measurement of Multimode Optical Fibers by Mode-Selective Excitation Using One Spatial Light Modulator. Appl. Sci. 2019, 9, 195. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical Vector Beams: From Mathematical Concepts to Applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Zhan, Q. Trapping Metallic Rayleigh Particles with Radial Polarization. Opt. Express 2004, 12, 3377–3382. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Viloria, I.; Nodar, Á.; Molezuelas-Ferreras, M.; Olmos-Trigo, J.; Cifuentes, Á.; Martínez, M.; Varga, M.; Molina-Terriza, G. On-Axis Optical Trapping with Vortex Beams: The Role of the Multipolar Decomposition. ACS Photonics 2024, 11, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Lei, T.; Wu, Z.; Gao, S.; Li, Z.; Yuan, X. Approach to Multiplexing Fiber Communication with Cylindrical Vector Beams. Opt. Lett. 2017, 42, 2579–2582. [Google Scholar] [CrossRef] [PubMed]
- Lerman, G.M.; Levy, U. Effect of Radial Polarization and Apodization on Spot Size under Tight Focusing Conditions. Opt. Express 2008, 16, 4567–4581. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.; Choudhury, A. Annular Pupils, Radial Polarization, and Superresolution. Appl. Opt. 2004, 43, 4322–4327. [Google Scholar] [CrossRef] [PubMed]
- Trägårdh, J.; Pikálek, T.; Stibuurek, M.; Simpson, S.; Cifuentes, A.; Čižmár, T. CARS Microscopy through a Multimode Fiber Probe with Reduced Four-Wave Mixing Background. In Proceedings of the Clinical and Translational Biophotonics, Fort Lauderdale, FL, USA, 24–27 April 2022; Optica Publishing Group: Washington, DC, USA, 2022; p. JM3A-43. [Google Scholar]
- Ndagano, B.; Nape, I.; Cox, M.A.; Rosales-Guzman, C.; Forbes, A. Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication. J. Light. Technol. 2017, 36, 292–301. [Google Scholar] [CrossRef]
- Li, Z.-X.; Ruan, Y.-P.; Chen, P.; Tang, J.; Hu, W.; Xia, K.-Y.; Lu, Y.-Q. Liquid Crystal Devices for Vector Vortex Beams Manipulation and Quantum Information Applications. Chin. Opt. Lett. 2021, 19, 112601. [Google Scholar] [CrossRef]
- Souza, C.; Borges, C.; Khoury, A.; Huguenin, J.; Aolita, L.; Walborn, S. Quantum Key Distribution without a Shared Reference Frame. Phys. Rev. A 2008, 77, 032345. [Google Scholar] [CrossRef]
- Parigi, V.; D’Ambrosio, V.; Arnold, C.; Marrucci, L.; Sciarrino, F.; Laurat, J. Storage and Retrieval of Vector Beams of Light in a Multiple-Degree-of-Freedom Quantum Memory. Nat. Commun. 2015, 6, 7706. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Wang, W.; Shi, B.; Zhang, H.; Shen, Y.; Deng, H.; Pu, W.; Liu, X.; Shan, H.; Ma, X.; et al. Concise and Efficient Direct-View Generation of Arbitrary Cylindrical Vector Beams by a Vortex Half-Wave Plate. Photonics Res. 2021, 9, 803–813. [Google Scholar] [CrossRef]
- Chen, P.; Ji, W.; Wei, B.-Y.; Hu, W.; Chigrinov, V.; Lu, Y.-Q. Generation of Arbitrary Vector Beams with Liquid Crystal Polarization Converters and Vector-Photoaligned q-Plates. Appl. Phys. Lett. 2015, 107, 241102. [Google Scholar] [CrossRef]
- Maurer, C.; Jesacher, A.; Fürhapter, S.; Bernet, S.; Ritsch-Marte, M. Tailoring of Arbitrary Optical Vector Beams. New J. Phys. 2007, 9, 78. [Google Scholar] [CrossRef]
- Rosales-Guzmán, C.; Bhebhe, N.; Forbes, A. Simultaneous Generation of Multiple Vector Beams on a Single SLM. Opt. Express 2017, 25, 25697–25706. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Han, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Generating Cylindrical Vector Beams with Subwavelength Concentric Metallic Gratings Fabricated on Optical Fibers. J. Opt. 2010, 13, 015003. [Google Scholar] [CrossRef]
- Brunet, C.; Ung, B.; Bélanger, P.-A.; Messaddeq, Y.; LaRochelle, S.; Rusch, L.A. Vector Mode Analysis of Ring-Core Fibers: Design Tools for Spatial Division Multiplexing. J. Light. Technol. 2014, 32, 4648–4659. [Google Scholar] [CrossRef]
- Zhao, C.; Gan, X.; Li, P.; Fang, L.; Han, L.; Tu, L.; Zhao, J. Design of Multicore Photonic Crystal Fibers to Generate Cylindrical Vector Beams. J. Light. Technol. 2015, 34, 1206–1211. [Google Scholar] [CrossRef]
- Feng, L.; Li, Y.; Wu, S.; Guan, X.; Yang, C.; Tong, W.; Li, W.; Qiu, J.; Hong, X.; Zuo, Y.; et al. All-Fiber Generation of Arbitrary Cylindrical Vector Beams on the First-Order Poincaré Sphere. Photonics Res. 2020, 8, 1268–1277. [Google Scholar] [CrossRef]
- Fan, W.; Chen, Z.; Chen, L.; Wu, L.; Ji, X.; Pu, J. Polarization Transmission Matrix for Completely Polarization Control of Focal Spots in Speckle Field of Multimode Fiber. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–5. [Google Scholar] [CrossRef]
- Čižmár, T.; Dholakia, K. Shaping the Light Transmission through a Multimode Optical Fibre: Complex Transformation Analysis and Applications in Biophotonics. Opt. Express 2011, 19, 18871–18884. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Carpenter, J.; Feng, Y.; Jain, S.; Jung, Y.; Feng, Y.; Zervas, M.N.; Richardson, D.J. Reconfigurable Structured Light Generation in a Multicore Fibre Amplifier. Nat. Commun. 2020, 11, 3986. [Google Scholar] [CrossRef] [PubMed]
- Volpe, G.; Petrov, D. Generation of Cylindrical Vector Beams with Few-Mode Fibers Excited by Laguerre–Gaussian Beams. Opt. Commun. 2004, 237, 89–95. [Google Scholar] [CrossRef]
- Kitayama, K.; Diamantopoulos, N.-P. Few-Mode Optical Fibers: Original Motivation and Recent Progress. IEEE Commun. Mag. 2017, 55, 163–169. [Google Scholar] [CrossRef]
- Ashry, I.; Mao, Y.; Trichili, A.; Wang, B.; Ng, T.K.; Alouini, M.-S.; Ooi, B.S. A Review of Using Few-Mode Fibers for Optical Sensing. IEEE Access 2020, 8, 179592–179605. [Google Scholar] [CrossRef]
- Hotate, K.; Okoshi, T. Measurement of Refractive-Index Profile and Transmission Characteristics of a Single-Mode Optical Fiber from Its Exit-Radiation Pattern. Appl. Opt. 1979, 18, 3265–3271. [Google Scholar] [CrossRef] [PubMed]
- Pikálek, T.; Trägårdh, J.; Simpson, S.; Čižmár, T. Wavelength Dependent Characterization of a Multimode Fibre Endoscope. Opt. Express 2019, 27, 28239–28253. [Google Scholar] [CrossRef] [PubMed]
- Macedo, H.D.; Oliveira, J.N. Typing Linear Algebra: A Biproduct-Oriented Approach. Sci. Comput. Program. 2013, 78, 2160–2191. [Google Scholar] [CrossRef]
- Yoon, C.; Choi, Y.; Kim, M.; Moon, J.; Kim, D.; Choi, W. Experimental Measurement of the Number of Modes for a Multimode Optical Fiber. Opt. Lett. 2012, 37, 4558–4560. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.; Woerdman, J. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef] [PubMed]
- Wright, D. Beamwidths of a Diffracted Laser Using Four Proposed Methods. Opt. Quantum Electron. 1992, 24, S1129–S1135. [Google Scholar] [CrossRef]
- Frumker, E.; Silberberg, Y. Phase and Amplitude Pulse Shaping with Two-Dimensional Phase-Only Spatial Light Modulators. JOSA B 2007, 24, 2940–2947. [Google Scholar] [CrossRef]
- Bowman, R.; D’Ambrosio, V.; Rubino, E.; Jedrkiewicz, O.; Di Trapani, P.; Padgett, M.J. Optimisation of a Low Cost SLM for Diffraction Efficiency and Ghost Order Suppression. Eur. Phys. J. Spec. Top. 2011, 199, 149–158. [Google Scholar] [CrossRef]
- Stilgoe, A.B.; Kashchuk, A.V.; Preece, D.; Rubinsztein-Dunlop, H. An Interpretation and Guide to Single-Pass Beam Shaping Methods Using SLMs and DMDs. J. Opt. 2016, 18, 065609. [Google Scholar] [CrossRef]
- Boonzajer Flaes, D.E.; Stopka, J.; Turtaev, S.; De Boer, J.F.; Tyc, T.; Čižmár, T. Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides. Phys. Rev. Lett. 2018, 120, 233901. [Google Scholar] [CrossRef] [PubMed]
- Vdovin, G.; van Goor, F. LightPipes for Python 2.1.5; Flexible Optical: Rijswijk, The Netherlands, 2017. [Google Scholar]
- Stefańska, K.; Hertz, E.; Tarnowski, K.; Kibler, B.; Béjot, P. Orbital Chirality of Light in Few-Mode Step-Index Optical Fibers. APL Photonics 2025, 10, 040804. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, S.-H.; Shi, L.; Liu, Y. Measurement-Device-Independent Quantum Key Distribution with Pairs of Vector Vortex Beams. Phys. Rev. A 2016, 93, 032320. [Google Scholar] [CrossRef]
- Alarcon, A.; Argillander, J.; Lima, G.; Xavier, G.B. Few-Mode-Fiber Technology Fine-Tunes Losses in Quantum Communication Systems. Phys. Rev. Appl. 2021, 16, 034018. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cifuentes, A.; Varga, M.; Molina-Terriza, G. Singular Value Decomposition-Assisted Holographic Generation of High-Quality Cylindrical Vector Beams Through Few-Mode Fibers. Photonics 2025, 12, 716. https://doi.org/10.3390/photonics12070716
Cifuentes A, Varga M, Molina-Terriza G. Singular Value Decomposition-Assisted Holographic Generation of High-Quality Cylindrical Vector Beams Through Few-Mode Fibers. Photonics. 2025; 12(7):716. https://doi.org/10.3390/photonics12070716
Chicago/Turabian StyleCifuentes, Angel, Miguel Varga, and Gabriel Molina-Terriza. 2025. "Singular Value Decomposition-Assisted Holographic Generation of High-Quality Cylindrical Vector Beams Through Few-Mode Fibers" Photonics 12, no. 7: 716. https://doi.org/10.3390/photonics12070716
APA StyleCifuentes, A., Varga, M., & Molina-Terriza, G. (2025). Singular Value Decomposition-Assisted Holographic Generation of High-Quality Cylindrical Vector Beams Through Few-Mode Fibers. Photonics, 12(7), 716. https://doi.org/10.3390/photonics12070716