A Direct Measurement of the C2H2 Concentration from the C2H2–Oil Mixed Solution Using the Photoacoustic Spectroscopy Method
Abstract
1. Introduction
2. Theoretical Analysis of the PA Signal
3. C2H2 Concentration Measurement
4. Error Analysis and Stability Tests
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, T.; Ma, F.; Zhao, Y.; Zhao, Y.; Wan, L.; Li, K.; Zhang, G. Portable ppb-level acetylene photoacoustic sensor for transformer on-field measurement. Optik 2021, 243, 167440. [Google Scholar] [CrossRef]
- Li, C.; Qi, H.; Zhao, X.; Guo, M.; An, R.; Chen, K. Multi-pass absorption enhanced photoacoustic spectrometer based on combined light sources for dissolved gas analysis in oil. Opt. Lasers Eng. 2022, 159, 107221. [Google Scholar] [CrossRef]
- Mao, Z.; Wen, J. Detection of dissolved gas in oil–insulated electrical apparatus by photoacoustic spectroscopy. IEEE Electr. Insul. Mag. 2015, 31, 7–14. [Google Scholar] [CrossRef]
- Zhu, Q.; Yin, Y.; Wang, Q.; Wang, Z.; Li, Z. Study on the online dissolved gas analysis monitor based on the photoacoustic spectroscopy. In Proceedings of the 2012 IEEE International Conference on Condition Monitoring and Diagnosis, Bali, Indonesia, 23–27 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 433–436. [Google Scholar]
- Bustamante, S.; Manana, M.; Arroyo, A.; Castro, P.; Laso, A.; Martinez, R. Dissolved gas analysis equipment for online monitoring of transformer oil: A review. Sensors 2019, 19, 4057. [Google Scholar] [CrossRef] [PubMed]
- Palzer, S. Photoacoustic-based gas sensing: A review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef]
- Boschetti, A.; Bassi, D.; Iacob, E.; Iannotta, S.; Ricci, L.; Scotoni, M. Resonant photoacoustic simultaneous detection of methane and ethylene by means. of a 1.63-μm diode laser. Appl. Phys. B 2002, 74, 273–278. [Google Scholar] [CrossRef]
- Wolff, M.; Harde, H. Photoacoustic spectrometer based on a DFB-diode laser. Infrared Phys. Technol. 2000, 41, 283–286. [Google Scholar] [CrossRef]
- Besson, J.P.; Schilt, S.; Thévenaz, L. Sub-ppm multi-gas photoacoustic sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 899–904. [Google Scholar] [CrossRef]
- Goto, M.; Iguchi, Y.; Ono, K.; Ando, A.; Takeshi, F.; Matsunaga, S.; Yasuno, Y.; Tanioka, K.; Tajima, T. High-performance condenser microphone with single-crystalline silicon diaphragm and backplate. IEEE Sens. J. 2006, 7, 4–10. [Google Scholar] [CrossRef]
- Lindley, R.E.; Parkes, A.M.; Keen, K.A.; McNaghten, E.D.; Orr-Ewing, A.J. A sensitivity comparison of three photoacoustic cells containing a single microphone, a differential dual microphone or a cantilever pressure sensor. Appl. Phys. B 2007, 86, 707–713. [Google Scholar] [CrossRef]
- Chen, K.; Yu, Q.; Gong, Z.; Guo, M.; Qu, C. Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy. Sens. Actuators B Chem. 2018, 268, 205–209. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, S.; Ma, Y. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. Photoacoustics 2023, 30, 100467. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Chen, W.; Wang, Y.; Pan, C. Photoacoustic detection of dissolved gases in transformer oil. Eur. Trans. Electr. Power 2008, 18, 562–576. [Google Scholar] [CrossRef]
- Kitamori, T.; Sawada, T. Theoretical Analysis of Frequency Characteristics of Photoacoustic Signal in Liquids. Jpn. J. Appl. Phys. 1982, 21, L285. [Google Scholar] [CrossRef]
- Nosaka, Y.; Tokunaga, E. Development of photoacoustic spectroscopy with a piezofilm. Appl. Opt. 2007, 46, 4289–4293. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, Y.; Chen, Y.; Wang, Z.; Dai, J. Experimental Research on Measuring the Concentration of CO2 in Gas-Liquid Solution Based on PZT Piezoelectric-Photoacoustic Spectroscopy. Sensors 2022, 22, 936. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, G.; Xie, Y.; Chen, Z.; Zheng, D.; Qin, W. Direct Detection of Oil-dissolved Acetylene Without Oil-gas Separation. Proc. CSEE 2023, 43, 8151–8160. [Google Scholar]
- Bakar, N.A.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Ning, Z.; Xu, H.; Miao, J.; Pan, Y.; Yang, C.; Fang, Y. Compact gas cell for simultaneous detection of atmospheric aerosol optical properties based on photoacoustic spectroscopy and integrating sphere scattering enhancement. Photoacoustics 2024, 36, 100591. [Google Scholar] [CrossRef]
- Duggen, L.; Lopes, N.; Willatzen, M.; Rubahn, H.G. Finite element simulation of photoacoustic pressure in a resonant photoacoustic cell using lossy boundary conditions. Int. J. Thermophys. 2011, 32, 774–785. [Google Scholar] [CrossRef]
- Shtemler, Y.M.; Shreiber, I.R. Heat transfer in sound propagation and attenuation through gas–liquid polyhedral foams. Int. Commun. Heat Mass Transf. 2006, 33, 571–579. [Google Scholar] [CrossRef]
- He, Q.; Wang, Q.; Lv, P.; Lu, Z.; Lv, N.; Zhao, H.; Tao, W. Liquid photoacoustic sensing with high sensitivity by temperature compensated differential detection method. Appl. Phys. Express 2020, 13, 117001. [Google Scholar] [CrossRef]
- Xiong, S.; Yin, X.; Wang, Q.; Xia, J.; Chen, Z.; Lei, H.; Yan, X.; Zhu, A.; Qiu, F.; Chen, B.; et al. Photoacoustic Spectroscopy Gas Detection Technology Research Progress. Appl. Spectrosc. 2024, 78, 139–158. [Google Scholar] [CrossRef]
- Mannoor, M.; Hwang, J.; Kang, S. Numerical study of geometrical effects on the performance of an H-type cylindrical resonant photoacoustic cell. J. Mech. Sci. Technol. 2018, 32, 5671–5683. [Google Scholar] [CrossRef]
- Kitamori, T.; Fujii, M.; Sawada, T.; Gohshi, Y. Frequency characteristics of photoacoustic signals generated in liquids. J. Appl. Phys. 1984, 55, 4005–4009. [Google Scholar] [CrossRef]
- Cai, Y.; Arsad, N.; Li, M.; Wang, Y. Buffer structure optimization of the photoacoustic cell for trace gas detection. Optoelectron. Lett. 2013, 9, 233–237. [Google Scholar] [CrossRef]
- Dombek, G.; Nadolny, Z. Influence of paper type and liquid insulation on heat transfer in transformers. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1863–1870. [Google Scholar] [CrossRef]
- Mia, S.; Ohno, N. Prediction of pressure–viscosity coefficient of lubricating oils based on sound velocity. Lubr. Sci. 2009, 21, 343–354. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Cheng, G.; Cao, Y.; Tian, X.; Cao, Y.; Liu, K. Influence of photoacoustic cell geometrical shape on the performance of photoacoustic spectroscopy. Spectrosc. Spectr. Anal. 2020, 40, 2345–2351. [Google Scholar]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Tavakoli, M.; Tavakoli, A.; Taheri, M.; Saghafifar, H. Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy (LPAS). Opt. Laser Technol. 2010, 42, 828–838. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.; Ma, G.; Song, H.; Zhang, C. Direct detection of acetylene dissolved in transformer oil using spectral absorption. Optik 2019, 176, 214–220. [Google Scholar] [CrossRef]
- Wu, G.; Xiong, L.; Dong, Z.; Liu, X.; Cai, C.; Qi, Z.M. Development of highly sensitive fiber-optic acoustic sensor and its preliminary application for sound source localization. J. Appl. Phys. 2021, 129, 164504. [Google Scholar] [CrossRef]
- Dumitras, D.C.; Dutu, D.C.; Matei, C.; Magureanu, A.M.; Petrus, M.; Popa, C. Laser photoacoustic spectroscopy: Principles, instrumentation, and characterization. J. Optoelectron. Adv. Mater. 2007, 9, 3655. [Google Scholar]
- Guan, W.; Tang, N.; He, K.; Hu, X.; Li, M.; Li, K. Gas-sensing performances of metal oxide nanostructures for detecting dissolved gases: A mini review. Front. Chem. 2020, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Luo, B.; Shen, X.; Han, W.; Cui, R.; Wu, J.; Zhang, H.; Xiao, W.; Zhong, Z.; Dong, L.; et al. A review of optical gas sensing technology for dissolved gas analysis in transformer oil. Front. Phys. 2025, 13, 1547563. [Google Scholar] [CrossRef]
- Fan, J.; Wang, F.; Sun, Q.; Bin, F.; Ding, J.; Ye, H. SOFC detector for portable gas chromatography: High-sensitivity detection of dissolved gases in transformer oil. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2854–2863. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, L.; Peng, S.; Lu, J.; Zhou, J. Analysis of Dissolved Gas in Transformer Oil Based on Laser Raman Spectroscopy. Proc. CSEE 2014, 34, 2485–2492. [Google Scholar]
- Tang, X.; Wang, W.; Zhang, X.; Wang, E.; Li, X. On-line analysis of oil-dissolved gas in power transformers using Fourier transform infrared spectrometry. Energies 2018, 11, 3192. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Li, Z.; Zheng, H.; Dai, J. Development of an online detection setup for dissolved gas in transformer insulating oil. Appl. Sci. 2021, 11, 12149. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
; cell radius | 3.00 mm |
; isobaric heat capacity | 1902 J/(kg·K) [28] |
; sound velocity | 1420 m/s [29] |
; light scattering coefficient | 0.08 1/cm |
; thermal expansion coefficient | 0.0008 1/K [28] |
; C2H2 absorption coefficient | 5.55 × 10−1 1/cm [30] |
Performance Index | GC [39] | RS [40] | FTIR [41] | TDLAS [42] | Our PAS |
---|---|---|---|---|---|
Limit of Detection (C2H2) | 0.05 μL/L | 5 μL/L | 0.1 μL/L | 0.5 μL/L | 0.2 mL/L |
Measurement Time | 30 min | 30 min | 30 min | 30 min | 20 s |
System Complexity | High | High | Moderate | Moderate | Low |
Degassing Required | Yes | Yes | Yes | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, Z.; Ke, J.; Lu, H.; Wen, X.; Li, L.; Ming, Z.; Deng, S.; Li, M. A Direct Measurement of the C2H2 Concentration from the C2H2–Oil Mixed Solution Using the Photoacoustic Spectroscopy Method. Photonics 2025, 12, 471. https://doi.org/10.3390/photonics12050471
Rong Z, Ke J, Lu H, Wen X, Li L, Ming Z, Deng S, Li M. A Direct Measurement of the C2H2 Concentration from the C2H2–Oil Mixed Solution Using the Photoacoustic Spectroscopy Method. Photonics. 2025; 12(5):471. https://doi.org/10.3390/photonics12050471
Chicago/Turabian StyleRong, Zikang, Jian Ke, Haifei Lu, Xiaoyan Wen, Lijie Li, Zhiwen Ming, Shuo Deng, and Min Li. 2025. "A Direct Measurement of the C2H2 Concentration from the C2H2–Oil Mixed Solution Using the Photoacoustic Spectroscopy Method" Photonics 12, no. 5: 471. https://doi.org/10.3390/photonics12050471
APA StyleRong, Z., Ke, J., Lu, H., Wen, X., Li, L., Ming, Z., Deng, S., & Li, M. (2025). A Direct Measurement of the C2H2 Concentration from the C2H2–Oil Mixed Solution Using the Photoacoustic Spectroscopy Method. Photonics, 12(5), 471. https://doi.org/10.3390/photonics12050471