High-Power Lasers and Light–Matter Interactions
Acknowledgments
Conflicts of Interest
References
- Dutta Majumdar, J.; Manna, I. Laser material processing. Int. Mater. Rev. 2011, 56, 341–388. [Google Scholar] [CrossRef]
- Li, L. The advances and characteristics of high-power diode laser materials processing. Opt. Lasers Eng. 2000, 34, 231–253. [Google Scholar] [CrossRef]
- Nath, A. High power lasers in material processing applications: An overview of recent developments. In Laser-Assisted Fabrication of Materials; Springer: Berlin/Heidelberg, Germany, 2012; pp. 69–111. [Google Scholar]
- Bachmann, F. Industrial applications of high power diode lasers in materials processing. Appl. Surf. Sci. 2003, 208, 125–136. [Google Scholar] [CrossRef]
- Schneider, A.; Stillhart, M.; Günter, P. High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths. Opt. Express 2006, 14, 5376–5384. [Google Scholar] [CrossRef]
- Knox, W.H. Ultrafast technology in telecommunications. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1273–1278. [Google Scholar] [CrossRef]
- Jauregui, C.; Limpert, J.; Tünnermann, A. High-power fibre lasers. Nat. Photonics 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Jia, S.; Lo, M.C.; Zhang, L.; Ozolins, O.; Udalcovs, A.; Kong, D.; Pang, X.; Guzman, R.; Yu, X.; Xiao, S.; et al. Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications. Nat. Commun. 2022, 13, 1388. [Google Scholar] [CrossRef] [PubMed]
- Mourou, G.; Tajima, T.; Bulanov, S. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef]
- Khalatpour, A.; Paulsen, A.K.; Deimert, C.; Wasilewski, Z.R.; Hu, Q. High-power portable terahertz laser systems. Nat. Photonics 2021, 15, 16–20. [Google Scholar] [CrossRef]
- Jackson, S.D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 2012, 6, 423–431. [Google Scholar] [CrossRef]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Liu, P.Q.; Hoffman, A.J.; Escarra, M.D.; Franz, K.J.; Khurgin, J.B.; Dikmelik, Y.; Wang, X.; Fan, J.Y.; Gmachl, C.F. Highly power-efficient quantum cascade lasers. Nat. Photonics 2010, 4, 95–98. [Google Scholar] [CrossRef]
- Südmeyer, T.; Marchese, S.; Hashimoto, S.; Baer, C.; Gingras, G.; Witzel, B.; Keller, U. Femtosecond laser oscillators for high-field science. Nat. Photonics 2008, 2, 599–604. [Google Scholar] [CrossRef]
- Xu, G.; Colombelli, R.; Khanna, S.P.; Belarouci, A.; Letartre, X.; Li, L.; Linfield, E.H.; Davies, A.G.; Beere, H.E.; Ritchie, D.A. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nat. Commun. 2012, 3, 952. [Google Scholar] [CrossRef]
- Jawad, H.J.; Sultan, A.F. Review recent developments in high-power diode lasers for biomedical applications. J. Opt. 2024, 1–6. [Google Scholar] [CrossRef]
- Allen, T.J.; Beard, P.C. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed. Opt. Express 2016, 7, 1260–1270. [Google Scholar] [CrossRef]
- Kieffer, J.C.; Fourmaux, S.; Krol, A. The ultrafast high-peak power lasers in future biomedical and medical x-ray imaging. In Proceedings of the 19th International Conference and School on Quantum Electronics: Laser Physics and Applications, Sozopol, Bulgaria, 26–30 September 2016; SPIE: Bellingham, WA, USA, 2017; Volume 10226, pp. 306–315. [Google Scholar]
- Sun, J.; Wu, J.; Wu, S.; Goswami, R.; Girardo, S.; Cao, L.; Guck, J.; Koukourakis, N.; Czarske, J.W. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light. Sci. Appl. 2022, 11, 204. [Google Scholar] [CrossRef]
- Müller, A.; Marschall, S.; Jensen, O.B.; Fricke, J.; Wenzel, H.; Sumpf, B.; Andersen, P.E. Diode laser based light sources for biomedical applications. Laser Photonics Rev. 2013, 7, 605–627. [Google Scholar] [CrossRef]
- Sun, J.; Kuschmierz, R.; Katz, O.; Koukourakis, N.; Czarske, J.W. Lensless fiber endomicroscopy in biomedicine. PhotoniX 2024, 5, 18. [Google Scholar] [CrossRef]
- Sanchez, M.; Gallego, D.; Lamela, H. High current short pulse driver using a high power diode laser for optoacoustic biomedical imaging techniques. Opt. Express 2022, 30, 44954–44966. [Google Scholar] [CrossRef]
- Sun, J.; Yang, B.; Koukourakis, N.; Guck, J.; Czarske, J.W. AI-driven projection tomography with multicore fibre-optic cell rotation. Nat. Commun. 2024, 15, 147. [Google Scholar] [CrossRef]
- Killinger, D.K.; Menyuk, N. Laser remote sensing of the atmosphere. Science 1987, 235, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B.M.; Lee, H.R.; Barnes, N.P. Mid infrared lasers for remote sensing applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Lamb, R.A. A review of ultra-short pulse lasers for military remote sensing and rangefinding. Technol. Opt. Countermeas. VI 2009, 7483, 61–75. [Google Scholar]
- Hovis, F.E.; Rhoades, M.; Burnham, R.L.; Force, J.D.; Schum, T.; Gentry, B.M.; Chen, H.; Li, S.X.; Hair, J.W.; Cook, A.L.; et al. Single-frequency lasers for remote sensing. In Proceedings of the Solid State Lasers XIII: Technology and Devices, San Jose, CA, USA, 25–29 January 2004; SPIE: Bellingham, WA, USA, 2004; Volume 5332, pp. 263–270. [Google Scholar]
- Kobayashi, T. Techniques for laser remote sensing of the environment. Remote Sens. Rev. 1987, 3, 1–56. [Google Scholar] [CrossRef]
- Morton, P.A.; Morton, M.J. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing. J. Light. Technol. 2018, 36, 5048–5057. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Z.; Qi, Y.; Han, B.; Wu, H.; Rao, Y. Wideband remote-sensing based on random fiber laser. J. Light. Technol. 2022, 40, 3104–3110. [Google Scholar] [CrossRef]
- Bäuerle, D. Laser Processing and Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Omar, A.; Hoffmann, M.; Galle, G.; Sylla, F.; Saraceno, C.J. Hybrid air-bulk multi-pass cell compressor for high pulse energies with full spatio-temporal characterization. Opt. Express 2024, 32, 13235–13248. [Google Scholar] [CrossRef]
- Omar, A.; Vogel, T.; Hoffmann, M.; Saraceno, C.J. Spectral broadening of 2-mJ femtosecond pulses in a compact air-filled convex–concave multi-pass cell. Opt. Lett. 2023, 48, 1458–1461. [Google Scholar] [CrossRef]
- Suzuki, A.; Kassai, B.; Wang, Y.; Omar, A.; Löscher, R.; Tomilov, S.; Hoffmann, M.; Saraceno, C.J. High-peak-power 2.1 μm femtosecond holmium amplifier at 100 kHz. Optica 2025, 12, 534–537. [Google Scholar] [CrossRef]
- Ng, G.; Li, L. The effect of laser peak power and pulse width on the hole geometry repeatability in laser percussion drilling. Opt. Laser Technol. 2001, 33, 393–402. [Google Scholar] [CrossRef]
- Limpert, J.; Roser, F.; Schimpf, D.N.; Seise, E.; Eidam, T.; Hadrich, S.; Rothhardt, J.; Misas, C.J.; Tunnermann, A. High repetition rate gigawatt peak power fiber laser systems: Challenges, design, and experiment. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 159–169. [Google Scholar] [CrossRef]
- Ding, D.; Lv, X.; Chen, X.; Wang, F.; Zhang, J.; Che, K. Tunable high-power blue external cavity semiconductor laser. Opt. Laser Technol. 2017, 94, 1–5. [Google Scholar] [CrossRef]
- Huang, M.C.; Zhou, Y.; Chang-Hasnain, C.J. A nanoelectromechanical tunable laser. Nat. Photonics 2008, 2, 180–184. [Google Scholar] [CrossRef]
- Fedorova, K.A.; Cataluna, M.A.; Krestnikov, I.; Livshits, D.; Rafailov, E.U. Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers. Opt. Express 2010, 18, 19438–19443. [Google Scholar] [CrossRef]
- McComb, T.S.; Sims, R.A.; Willis, C.C.; Kadwani, P.; Sudesh, V.; Shah, L.; Richardson, M. High-power widely tunable thulium fiber lasers. Appl. Opt. 2010, 49, 6236–6242. [Google Scholar] [CrossRef]
- Panarella, E. Spectral purity of high-intensity laser beams. Phys. Rev. A 1977, 16, 672. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Jiang, H.; Yang, X.; Pan, W.; Cui, S.; Gu, X.; Feng, Y. High order cascaded Raman random fiber laser with high spectral purity. Opt. Express 2018, 26, 5275–5280. [Google Scholar] [CrossRef]
- Lin, N.; Chen, Y.; Wei, X.; Yang, W.; Leng, Y. Spectral purity systems applied for laser-produced plasma extreme ultraviolet lithography sources: A review. High Power Laser Sci. Eng. 2023, 11, e64. [Google Scholar] [CrossRef]
- Nicolodi, D.; Argence, B.; Zhang, W.; Le Targat, R.; Santarelli, G.; Le Coq, Y. Spectral purity transfer between optical wavelengths at the 10–18 level. Nat. Photonics 2014, 8, 219–223. [Google Scholar] [CrossRef]
- Dang, L.; Huang, L.; Shi, L.; Li, F.; Yin, G.; Gao, L.; Lan, T.; Li, Y.; Jiang, L.; Zhu, T. Ultra-high spectral purity laser derived from weak external distributed perturbation. Opto-Electron. Adv. 2023, 6, 210149. [Google Scholar] [CrossRef]
- Račiukaitis, G. Ultra-short pulse lasers for microfabrication: A review. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1100112. [Google Scholar] [CrossRef]
- Nolte, S.; Schrempel, F.; Dausinger, F. Ultrashort pulse laser technology. Springer Ser. Opt. Sci. 2016, 195, 1. [Google Scholar]
- Finger, J.; Kalupka, C.; Reininghaus, M. High power ultra-short pulse laser ablation of IN718 using high repetition rates. J. Mater. Process. Technol. 2015, 226, 221–227. [Google Scholar] [CrossRef]
- Ren, J.; Cheng, W.; Li, S.; Suckewer, S. A new method for generating ultraintense and ultrashort laser pulses. Nat. Phys. 2007, 3, 732–736. [Google Scholar] [CrossRef]
- Günter, G.; Anappara, A.A.; Hees, J.; Sell, A.; Biasiol, G.; Sorba, L.; De Liberato, S.; Ciuti, C.; Tredicucci, A.; Leitenstorfer, A.; et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 2009, 458, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chen, W.; Xiong, Z.; Wang, Y.; Zhang, S.; Xia, Z. Laser-driven broadband near-infrared light source with watt-level output. Nat. Photonics 2024, 18, 562–568. [Google Scholar] [CrossRef]
- Gutzler, R.; Garg, M.; Ast, C.R.; Kuhnke, K.; Kern, K. Light–matter interaction at atomic scales. Nat. Rev. Phys. 2021, 3, 441–453. [Google Scholar] [CrossRef]
- Sun, J.; Qiu, L.; Liu, L.; Sheng, L.; Cui, Y.; Huang, L.; Pan, M.; Nian, F.; Hu, J. Output Characteristics of External-Cavity Mode-Hop-Free Tunable Laser Source in C+L Band. Photonics 2024, 11, 677. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, J.; Chen, Y.; Wang, H.; Wang, T.; Liu, Y.; Song, X.; Fan, Z. 1.2 kW, 20 kHz Nanosecond Nd:YAG Slab Laser System. Photonics 2024, 11, 297. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Li, N.; Yang, Z.; Li, S.; Li, S.; Wang, W.; Bayan, H.; Cheng, W.; Zhang, Y.; et al. A 2 µm Gallium Antimonide Semiconductor Laser Based on Slanted, Wedge-Shaped Microlens Fiber Coupling. Photonics 2024, 11, 108. [Google Scholar] [CrossRef]
- Han, X.; Liu, Z.; Li, S.; Li, S.; Yang, Z.; Su, Q.; Zhang, Y.; Bayanheshig; Xia, Y.; Wang, Y.; et al. Pulse Duration Compression by Two-Stage Stimulated Brillouin Scattering and Stimulated Raman Scattering. Photonics 2024, 11, 104. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, Y.; Zhang, W.; Sun, D. Combined Compression of Stimulated Brillouin Scattering and Laser–Induced Breakdown Enhanced with Sic Nanowire. Photonics 2024, 11, 96. [Google Scholar] [CrossRef]
- Song, F.; Chen, Q.; Tang, X.; Xu, F. Analytical Model of Point Spread Function under Defocused Degradation in Diffraction-Limited Systems: Confluent Hypergeometric Function. Photonics 2024, 11, 455. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Wang, S. Experimental Investigations and Modeling of Interference Fringe Geometry in Line-Shaped Gaussian Beam Intersections for Laser Doppler Sensors. Photonics 2023, 10, 1132. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Fan, X.; Huang, X.; Zhang, L.; Wang, C. Exploration of Illicit Drug Detection Based on Goos–Hänchen Shift. Photonics 2023, 10, 1270. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, Y.; Jin, G. Prediction of Shock Wave Velocity Induced by a Combined Millisecond and Nanosecond Laser Based on Convolution Neural Network. Photonics 2023, 10, 1034. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, S.; Sun, J. High-Power Lasers and Light–Matter Interactions. Photonics 2025, 12, 464. https://doi.org/10.3390/photonics12050464
Liu Z, Li S, Sun J. High-Power Lasers and Light–Matter Interactions. Photonics. 2025; 12(5):464. https://doi.org/10.3390/photonics12050464
Chicago/Turabian StyleLiu, Zhaohong, Sensen Li, and Jiawei Sun. 2025. "High-Power Lasers and Light–Matter Interactions" Photonics 12, no. 5: 464. https://doi.org/10.3390/photonics12050464
APA StyleLiu, Z., Li, S., & Sun, J. (2025). High-Power Lasers and Light–Matter Interactions. Photonics, 12(5), 464. https://doi.org/10.3390/photonics12050464