Temporal Reflection from Ultrashort Solitons in Nonlinear Dispersive Medium: Impact of Raman Scattering
Abstract
:1. Introduction
2. Solitons Acting as Mirrors
2.1. Temporal Reflection
2.2. Reflectivity of a Soliton
2.3. Soliton-Based Waveguides
3. Impact of Raman Scattering
3.1. Evolution of Short Pump Pulses
3.2. Temporal Reflection and Focusing
3.3. Time-Domain Waveguiding
3.4. Experimental Status
4. Waveguiding with a Single Soliton
4.1. Numerical Simulations
4.2. Experimental Results
4.3. Probing of Soliton’s Trajectory
4.4. Impact of Soliton’s Parameters
5. Concluding Remarks
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaafar, M.A.; Baba, T.; Eich, M.; Petrov, A.Y. Front-induced transitions. Nat. Photonics 2019, 13, 737–748. [Google Scholar] [CrossRef]
- Caloz, C.; Deck-Léger, Z. Spacetime metamaterials—Part I: General concepts. IEEE Trans. Antennas Propag. 2019, 68, 1569–1582. [Google Scholar] [CrossRef]
- Caloz, C.; Deck-Léger, Z. Spacetime metamaterials—Part II: Theory and applications. IEEE Trans. Antennas Propag. 2019, 68, 1583–1598. [Google Scholar] [CrossRef]
- Li, H.; Alù, A. Temporal switching to extend the bandwidth of thin absorbers. Optica 2021, 8, 24–29. [Google Scholar] [CrossRef]
- Galiffi, E.; Tirole, R.; Yin, S.; Li, H.; Vezzoli, S.; Huidobro, P.A.; Silveirinha, M.G.; Sapienza, R.; Alù, A.; Pendry, J.B. Photonics of time-varying media. Adv. Photonics 2022, 4, 014002. [Google Scholar] [CrossRef]
- Boltasseva, A.; Shalaev, V.M.; Segev, M. Photonic time crystals: From fundamental insights to novel applications: Opinion. Opt. Mater. Express 2024, 14, 592–597. [Google Scholar] [CrossRef]
- Morgenthaler, F.R. Velocity modulation of electromagnetic waves. IRE Trans. Microw. Theory Tech. 1958, 6, 167–172. [Google Scholar] [CrossRef]
- Sharabi, Y.; Dikopoltsev, A.; Lustig, E.; Lumer, Y.; Segev, M. Spatiotemporal photonic crystals. Optica 2022, 9, 585–592. [Google Scholar] [CrossRef]
- Wang, X.; Mirmoosa, M.S.; Asadchy, V.S.; Rockstuhl, C.; Fan, S.; Tretyakov, S.A. Metasurface-based realization of photonic time crystals. Sci. Adv. 2023, 9, eadg7541. [Google Scholar] [CrossRef]
- Lustig, E.; Segal, O.; Saha, S.; Fruhling, C.; Shalaev, V.M.; Boltasseva, A.; Segev, M. Photonic time-crystals—Fundamental concepts. Opt. Express 2023, 31, 9165–9170. [Google Scholar] [CrossRef] [PubMed]
- Bacot, V.; Labousse, M.; Eddi, A.; Fink, M.; Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 2016, 12, 972–977. [Google Scholar] [CrossRef]
- Moussa, H.; Xu, G.; Yin, S.; Galiffi, E.; Ra’di, Y.; Alù, A. Observation of temporal reflection and broadband frequency translation at photonic time interfaces. Nat. Phys. 2023, 19, 863–868. [Google Scholar] [CrossRef]
- Dong, Z.; Li, H.; Wan, T.; Liang, Q.; Yang, Z.; Yan, B. Quantum time reflection and refraction of ultracold atoms. Nat. Photonics 2024, 18, 68–73. [Google Scholar] [CrossRef]
- Plansinis, B.W.; Donaldson, W.R.; Agrawal, G.P. What is the temporal analog of reflection and refraction of optical beams? Phys. Rev. Lett. 2015, 115, 183901. [Google Scholar] [CrossRef]
- Biancalana, F.; Amann, A.; Uskov, A.V.; O’Reilly, E.P. Dynamics of light propagation in spatiotemporal dielectric structures. Phys. Rev. E 2007, 75, 046607. [Google Scholar] [CrossRef] [PubMed]
- Plansinis, B.W.; Donaldson, W.R.; Agrawal, G.P. Temporal waveguides for optical pulses. J. Opt. Soc. Am. B 2016, 33, 1112–1119. [Google Scholar] [CrossRef]
- Plansinis, B.W.; Donaldson, W.R.; Agrawal, G.P. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses. J. Opt. Soc. Am. B 2018, 35, 436–445. [Google Scholar] [CrossRef]
- Zhang, J.; Donaldson, W.R.; Agrawal, G.P. Temporal reflection and refraction of optical pulses inside a dispersive medium: An analytic approach. J. Opt. Soc. Am. B 2021, 38, 997–1003. [Google Scholar] [CrossRef]
- Zhang, J.; Donaldson, W.R.; Agrawal, G.P. Impact of the boundary’s sharpness on temporal reflection in dispersive media. Opt. Lett. 2021, 46, 4053–4056. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 6th ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Philbin, T.G.; Kuklewicz, C.; Robertson, S.; Hill, S.; Konig, F.; Leonhardt, U. Fiber-optical analog of the event horizon. Science 2008, 319, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Demircan, A.; Amiranashvili, S.; Steinmeyer, G. Controlling light by light with an optical event horizon. Phys. Rev. Lett. 2011, 106, 163901. [Google Scholar] [CrossRef] [PubMed]
- Tartara, L. Frequency shifting of femtosecond pulses by reflection at solitons. IEEE J. Quantum Electron. 2012, 48, 1439–1442. [Google Scholar] [CrossRef]
- Webb, K.E.; Erkintalo, M.; Xu, Y.; Broderick, N.G.R.; Dudley, J.M.; Genty, G.; Murdoch, S.G. Nonlinear optics of fibre event horizons. Nat. Commun. 2014, 5, 4969. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3, pp. 79–81. [Google Scholar]
- Zhang, J.; Donaldson, W.R.; Agrawal, G.P. Temporal reflection of an optical pulse from a short soliton: Impact of Raman scattering. J. Opt. Soc. Am. B 2022, 39, 1950–1957. [Google Scholar] [CrossRef]
- Zhang, J.; Donaldson, W.R.; Agrawal, G.P. Raman-induced mode coupling in temporal waveguides formed by short solitons. Phys. Rev. A 2023, 107, 033512. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Fibre supercontinuum generation overview. In Supercontinuum Generation in Optical Fibers; Dudley, J.M., Taylor, J.R., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 52–61. [Google Scholar]
- Wang, S.F.; Mussot, A.; Conforti, M.; Zeng, X.L.; Kudlinski, A. Bouncing of a dispersive wave in a solitonic cage. Opt. Lett. 2015, 40, 3320–3323. [Google Scholar] [CrossRef] [PubMed]
- Suret, P.; Dufour, M.; Roberti, G.; El, G.; Copie, F.; Randoux, S. Soliton refraction by an optical soliton gas. Phys. Rev. Res. 2023, 5, L042002. [Google Scholar] [CrossRef]
- Sharabi, Y.; Lustig, E.; Segev, M. Disordered photonic time crystals. Phys. Rev. Lett. 2021, 126, 163902. [Google Scholar] [CrossRef]
- Eswaran, K.S.; Kopaei, A.E.; Sacha, K. Anderson localization in photonic time crystals. arXiv 2024, arXiv:2410.23095. [Google Scholar]
- Zhang, J.; Donaldson, W.R.; Agrawal, G.P. Experimental observation of a Raman-induced temporal waveguide. Phys. Rev. A 2023, 107, 063518. [Google Scholar] [CrossRef]
- Nishizawa, N.; Goto, T. Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength. Opt. Lett. 2002, 27, 152–154. [Google Scholar] [CrossRef]
- Austin, D.R.; de Sterke, C.M.; Eggleton, B.J.; Brown, T.G. Dispersive wave blue-shift in supercontinuum generation. Opt. Express 2006, 14, 11997–12007. [Google Scholar] [CrossRef] [PubMed]
- Travers, J.C.; Taylor, J.R. Soliton trapping of dispersive waves in tapered optical fibers. Opt. Lett. 2009, 34, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.; Kuklewicz, C.E.; Leonhardt, U.; König, F. Evolution of light trapped by a soliton in a microstructured fiber. Opt. Express 2009, 17, 13588–13601. [Google Scholar] [CrossRef] [PubMed]
- Judge, A.C.; Bang, O.; de Sterke, C.M. Theory of dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber. J. Opt. Soc. Am. B 2010, 27, 2195–2202. [Google Scholar] [CrossRef]
- Robertson, S.; Leonhardt, U. Frequency shifting at fiber-optical event horizons: The effect of Raman deceleration. Phys. Rev. A 2010, 81, 063835. [Google Scholar] [CrossRef]
- Zhang, J.; Donaldson, W.R.; Agrawal, G.P. Probing the decelerating trajectory of a Raman soliton using temporal reflection. Opt. Express 2023, 31, 27621–27632. [Google Scholar] [CrossRef]
- Zhang, J.; Donaldson, W.R.; Agrawal, G.P. Temporal reflection from short pump pulses inside a dispersive nonlinear medium: The impact of pump parameters. J. Opt. Soc. Am. B 2024, 41, 1836–1846. [Google Scholar] [CrossRef]
- Kaup, D.J.; El-Reedy, J.; Malomed, B.A. Effect of a chirp on soliton production. Phys. Rev. E 1994, 50, 1635–1637. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrawal, G.P. Temporal Reflection from Ultrashort Solitons in Nonlinear Dispersive Medium: Impact of Raman Scattering. Photonics 2024, 11, 1189. https://doi.org/10.3390/photonics11121189
Agrawal GP. Temporal Reflection from Ultrashort Solitons in Nonlinear Dispersive Medium: Impact of Raman Scattering. Photonics. 2024; 11(12):1189. https://doi.org/10.3390/photonics11121189
Chicago/Turabian StyleAgrawal, Govind P. 2024. "Temporal Reflection from Ultrashort Solitons in Nonlinear Dispersive Medium: Impact of Raman Scattering" Photonics 11, no. 12: 1189. https://doi.org/10.3390/photonics11121189
APA StyleAgrawal, G. P. (2024). Temporal Reflection from Ultrashort Solitons in Nonlinear Dispersive Medium: Impact of Raman Scattering. Photonics, 11(12), 1189. https://doi.org/10.3390/photonics11121189