Structured Light Beams: Science and Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Sheppard, C.J.R. Tight Focusing of Light. Photonics 2024, 11, 913. https://doi.org/10.3390/photonics11100913.
- Barriopedro, M.G.; Holguín, M.; de Lara-Montoya, P.; Mata-Cervera, N.; Porras, M.A. Three-Dimensional Exploding Light Wave Packets. Photonics 2024, 11, 652. https://doi.org/10.3390/photonics11070652.
- Khonina, S.N.; Ustinov, A.V.; Porfirev, A.P.; Karpeev, S.V. Analysis of the Polarization Distribution and Spin Angular Momentum of the Interference Field Obtained by Co-Planar Beams with Linear and Circular Polarization. Photonics 2024, 11, 478. https://doi.org/10.3390/photonics11050478.
- Grunwald, R.; Jurke, M.; Liebmann, M.; Treffer, A.; Bock, M. Generation of Propagation-Dependent OAM Self-Torque with Chirped Spiral Gratings. Photonics 2024, 11, 463. https://doi.org/10.3390/photonics11050463.
- Aihemaiti, M.; Sulaiman, D.; Jashaner, D.; Zhou, Y.; Yang, X.; Li, Z.; Muhutijiang, B.; Yusufu, T. Tunable Near and Mid-Infrared (1.3–5 µm) Picosecond Pulsed Optical Vortex Parametric Oscillator. Photonics 2024, 11, 319. https://doi.org/10.3390/photonics11040319.
- Baliyan, M.; Nishchal, N.K. Determining Topological Charge of Bessel-Gaussian Beams Using Modified Mach-Zehnder Interferometer. Photonics 2024, 11, 263. https://doi.org/10.3390/photonics11030263.
- Kotlyar, V.V.; Kovalev, A.A. Spin Hall Effect of Two-Index Paraxial Vector Propagation-Invariant Beams. Photonics 2023, 10, 1288. https://doi.org/10.3390/photonics10111288.
- Deepa, S.; Khare, K.; Paramasivam, S. Singularities in Computational Optics. Photonics 2025, 12, 96. https://doi.org/10.3390/photonics12020096.
- De Leo, S.; Mazzeo, M. Angular Deviations, Lateral Displacements, and Transversal Symmetry Breaking: An Analytical Tutorial. Photonics 2024, 11, 573. https://doi.org/10.3390/photonics11060573.
- Aït-Ameur, K. The Advantages and Disadvantages of Using Structured High-Order but Single Laguerre–Gauss LGp0 La-ser Beams. Photonics 2024, 11, 217. https://doi.org/10.3390/photonics11030217.
- Rosen, J.; Anand, V. Optical Imaging Using Coded Aperture Correlation Holography (COACH) with PSF of Spa-tial-Structured Longitudinal Light Beams—A Study Review. Photonics 2024, 11, 115. https://doi.org/10.3390/photonics11020115.
References
- Rigrod, W.W. Isolation of axi-symmetrical optical-resonator modes. Appl. Phys. Lett. 1963, 2, 51–53. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Allam, S.R. A conceptual review on Bessel beams. Phys. Scr. 2024, 99, 062007. [Google Scholar]
- Bandres, M.A.; Gutiérrez-Vega, J.C. Ince–Gaussian modes of the paraxial wave equation and stable resonators. J. Opt. Soc. Am. A 2004, 21, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of accelerating Airy beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef]
- Ahluwalia, B.P.S.; Yuan, X.C.; Tao, S.H. Generation of self-imaged optical bottle beams. Opt. Commun. 2004, 238, 177–184. [Google Scholar] [CrossRef]
- Dennis, M.R. Polarization singularities in paraxial vector fields: Morphology and statistics. Opt. Commun. 2002, 213, 201–221. [Google Scholar] [CrossRef]
- Freund, I. Polarization singularity indices in Gaussian laser beams. Opt. Commun. 2002, 201, 251–270. [Google Scholar] [CrossRef]
- Allam, S.R.; Yoneda, Y.; Omatsu, T. Optical Quasiparticles in Paraxial Laser Beams, Book Chapter in Progress in Optics; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar] [CrossRef]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Omatsu, T.; Miyamoto, K.; Lee, A.J. Wavelength-versatile optical vortex lasers. J. Opt. 2017, 19, 123002. [Google Scholar] [CrossRef]
- Reddy, A.N.K.; Mahler, S.; Goldring, A.; Pal, V.; Friesem, A.A.; Davidson, N. Phase locking of lasers with Gaussian coupling. Opt. Express 2022, 30, 1114–1129. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Fujii, M.; Watanabe, Y.; Toyama, N.; Iketaki, Y. Generation of a doughnut-shaped beam using a spiral phase plate. Rev. Sci. Instrum. 2004, 75, 5131–5135. [Google Scholar] [CrossRef]
- Silfvast, W.T. Laser Fundamentals; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Sutherland, R.L. Handbook of Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Reddy, A.N.K.; Zacharias, H.; Yilmaz, H.; Kim, V.V.; Kärcher, V.; Anand, V.; Ganeev, R.A. Generating high-harmonic array beams. APL Photonics 2025, 10, 026109. [Google Scholar] [CrossRef]
- Loescher, A.; Röcker, C.; Bienert, F.; Graf, T.; Ahmed, M.A. Frequency-doubled high-power optical vortex beam with sub 500 fs pulse duration. J. Light. Technol. 2023, 41, 2174–2178. [Google Scholar] [CrossRef]
- Abulikemu, A.; Yusufu, T.; Mamuti, R.; Miyamoto, K.; Omatsu, T. Widely-tunable vortex output from a singly resonant optical parametric oscillator. Opt. Express 2015, 23, 18338–18344. [Google Scholar] [CrossRef]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef]
- Watanabe, T.; Iketaki, Y.; Omatsu, T.; Yamamoto, K.; Sakai, M.; Fujii, M. Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. Opt. Express 2003, 11, 3271–3276. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Garcés-Chávez, V.; McGloin, D.; Melville, H.; Sibbett, W.; Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 2002, 419, 145–147. [Google Scholar] [CrossRef]
- Omatsu, T.; Miyamoto, K.; Toyoda, K.; Morita, R.; Arita, Y.; Dholakia, K. A new twist for materials science: The formation of chiral structures using the angular momentum of light. Adv. Opt. Mater. 2019, 7, 1801672. [Google Scholar] [CrossRef]
- Toyoda, K.; Miyamoto, K.; Aoki, N.; Morita, R.; Omatsu, T. Using Optical Vortex to Control the Chirality of Twisted Metal Nanostructures. Nano Lett. 2012, 12, 3645–3649. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Takahashi, F.; Takizawa, S.; Tokizane, Y.; Morita, R.; Omatsu, T. Transfer of Light Helicity to Nanostructures. Phys. Rev. Lett. 2013, 110, 143603. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Allegre, O.; Li, L. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus. Light. Sci. Appl. 2022, 11, 339. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ansari, M.A.; Ahmed, H.; Wang, R.; Wang, G.; Chen, X. Longitudinally variable 3D optical polarization structures. Sci. Adv. 2023, 9, eadj6675. [Google Scholar] [CrossRef]
- Lu, J.; Hassan, M.; Courvoisier, F.; Garcia-Caurel, E.; Brisset, F.; Ossikovski, R.; Zeng, X.; Poumellec, B.; Lancry, M. 3D structured Bessel beam polarization and its application to imprint chiral optical properties in silica. APL Photonics 2023, 8, 060801. [Google Scholar] [CrossRef]
- Asgari Sabet, R.; Ishraq, A.; Saltik, A.; Bütün, M.; Tokel, O. Laser nanofabrication inside silicon with spatial beam modulation and anisotropic seeding. Nat. Commun. 2024, 15, 5786. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, A.N.K.; Allam, S.R. Structured Light Beams: Science and Applications. Photonics 2025, 12, 296. https://doi.org/10.3390/photonics12040296
Reddy ANK, Allam SR. Structured Light Beams: Science and Applications. Photonics. 2025; 12(4):296. https://doi.org/10.3390/photonics12040296
Chicago/Turabian StyleReddy, Andra Naresh Kumar, and Srinivasa Rao Allam. 2025. "Structured Light Beams: Science and Applications" Photonics 12, no. 4: 296. https://doi.org/10.3390/photonics12040296
APA StyleReddy, A. N. K., & Allam, S. R. (2025). Structured Light Beams: Science and Applications. Photonics, 12(4), 296. https://doi.org/10.3390/photonics12040296