W-Band Ultra-Thin Broadband Metamaterial Absorber—Design and Applications
Abstract
:1. Introduction
2. Design and Method
3. Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, W.; He, Q.; Cheng, T.; Chen, H.; Liu, C.; Liu, J.; Hong, Z.; Hu, X.; Guo, Y. A Method for Retrieving Cloud Microphysical Properties Using Combined Measurement of Millimeter-Wave Radar and Lidar. Remote. Sens. 2024, 16, 586. [Google Scholar] [CrossRef]
- Cuadrado-Calle, D.; Piironen, P.; Ayllon, N. Solid-state diode technology for millimeter and submillimeter-wave remote sensing applications: Current status and future trends. IEEE Microw. Mag. 2022, 23, 44–56. [Google Scholar] [CrossRef]
- Wang, S.; Mei, L.; Liu, R.; Jiang, W.; Yin, Z.; Deng, X.; He, T. Multi-modal fusion sensing: A comprehensive review of millimeter-wave radar and its integration with other modalities. IEEE Commun. Surv. Tutor. 2024, 27, 322–352. [Google Scholar] [CrossRef]
- Ma, Z.; Choi, J.; Yang, L.; Sohn, H. Structural displacement estimation using accelerometer and FMCW millimeter wave radar. Mech. Syst. Signal Process. 2023, 182, 109582. [Google Scholar] [CrossRef]
- Roberts, I.P.; Zhang, Y.; Osman, T.; Alkhateeb, A. Real-world evaluation of full-duplex millimeter wave communication systems. IEEE Trans. Wirel. Commun. 2024, 23, 10803–10819. [Google Scholar] [CrossRef]
- Khan, J.; Ullah, S.; Ali, U.; Tahir, F.A.; Peter, I.; Matekovits, L. Design of a millimeter-wave MIMO antenna array for 5G communication terminals. Sensors 2022, 22, 2768. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Lawler, N.B.; Evans, C.W.; Romanenko, S.; Chaudhari, N.; Fear, M.; Wood, F.; Smith, N.M.; Wallace, V.P.; Iyer, K.S. Millimeter waves alter DNA secondary structures and modulate the transcriptome in human fibroblasts. Biomed. Opt. Express 2022, 13, 3131–3144. [Google Scholar] [CrossRef]
- El Khoueiry, C.; Moretti, D.; Renom, R.; Camera, F.; Orlacchio, R.; Garenne, A.; Poulletier De Gannes, F.; Poque-Haro, E.; Lagroye, I.; Veyret, B. Decreased spontaneous electrical activity in neuronal networks exposed to radiofrequency 1,800 MHz signals. J. Neurophysiol. 2018, 120, 2719–2729. [Google Scholar] [CrossRef]
- You, X.; Upadhyay, A.; Cheng, Y.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon. Opt. Lett. 2020, 45, 1196–1199. [Google Scholar] [CrossRef]
- Cai, B.; Yang, L.; Wu, L.; Cheng, Y.; Li, X. Dual-narrowband terahertz metamaterial absorber based on all-metal vertical ring array for enhanced sensing application. Phys. Scr. 2024, 99, 095503. [Google Scholar] [CrossRef]
- Tian, W.; Yang, L.; Cai, B.; Cheng, Y.; Chen, F.; Luo, H.; Li, X. Design and Analysis of Dual-Band Metasurface Filter for Pulse Waves Based on Capacitive Nonlinear Circuits. Electronics 2025, 14, 603. [Google Scholar] [CrossRef]
- Foteinopoulou, S.; Economou, E.N.; Soukoulis, C.J. Refraction in media with a negative refractive index. Phys. Rev. Lett. 2003, 90, 107402. [Google Scholar] [CrossRef] [PubMed]
- Xi, S.; Chen, H.; Jiang, T.; Ran, L.; Huangfu, J.; Wu, B.-I.; Kong, J.A.; Chen, M. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 2009, 103, 194801. [Google Scholar] [CrossRef]
- Aieta, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Jia, B.; Geng, T.; Li, X.; Feng, L.; Qian, W.; Liang, B.; Zhang, X.; Gu, M. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nat. Photonics 2011, 5, 239–242. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.-F. Lateral shift of the transmitted light beam through a left-handed slab. Phys. Rev. E 2004, 69, 066617. [Google Scholar] [CrossRef]
- Li, K.; Lu, H.; Bi, M.; Qi, L.; Weng, X. A flexible metamaterial absorber with temperature-insensitive design at microwave frequencies. Smart Mater. Struct. 2023, 32, 105027. [Google Scholar] [CrossRef]
- Zhou, Q.; Xue, B.; Gu, S.; Ye, F.; Fan, X.; Duan, W. Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials. Results Phys. 2022, 38, 105587. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z.; Zhou, F.; Luo, X.; Cheng, Z.; Yang, R.; Cheng, J.; Yang, G. A multifrequency narrow-band perfect absorber based on graphene metamaterial. Diam. Relat. Mater. 2023, 137, 110100. [Google Scholar] [CrossRef]
- Wei, X.; Wang, J.; Zhou, F.; Tan, R.; Liu, J.; Chen, P. A broadband low-profile microwave absorber based on ferromagnetic material doped hybrid stereo metamaterial. J. Phys. D Appl. Phys. 2023, 57, 015101. [Google Scholar] [CrossRef]
- Han, K.; Shim, H.B.; Hahn, J.W. Optically Transparent Single-Layer Frequency-Selective Surface Absorber for Dual-Band Millimeter-Wave Absorption and Low-Infrared Emissivity. Adv. Photonics Res. 2023, 4, 2200009. [Google Scholar] [CrossRef]
- Song, N.; Sun, Q.; Xu, S.; Shan, D.; Tang, Y.; Tian, X.; Xu, N.; Gao, J. Ultrawide-band optically transparent antidiffraction metamaterial absorber with a Thiessen-polygon metal-mesh shielding layer. Photonics Res. 2023, 11, 1354–1363. [Google Scholar] [CrossRef]
- Gan, R.; Yu, M.; Li, S.; Li, Y.; Fang, B.; Qi, S. A magnetic control reconfigurable coded electromagnetic absorbing metamaterial. Compos. Sci. Technol. 2022, 217, 109098. [Google Scholar] [CrossRef]
- Liu, S.; Pei, C.; Khan, L.; Wang, H.; Tao, S. Multiobjective optimization of coding metamaterial for low-profile and broadband microwave absorber. IEEE Antennas Wirel. Propag. Lett. 2023, 23, 379–383. [Google Scholar] [CrossRef]
- Suda, Y.; Matsuo, R.; Yoshii, T.; Yasudomi, S.; Tanimoto, T.; Harigai, T.; Takikawa, H.; Setaka, T.; Matsuda, K.-I.; Suizu, K. Electromagnetic wave absorption properties of carbon nanocoil composites in the millimeter waveband. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2018. [Google Scholar]
- Petroff, M.; Appel, J.; Rostem, K.; Bennett, C.L.; Eimer, J.; Marriage, T.; Ramirez, J.; Wollack, E.J. A 3D-printed broadband millimeter wave absorber. Rev. Sci. Instrum. 2019, 90, 024701. [Google Scholar] [CrossRef]
- Kamei, T.; Shima, H.; Yamamoto, T.; Ogino, S.; Ishii, S. Millimeter-wave absorption properties of thin wave absorber in free space with new porous carbon material. Wirel. Eng. Technol. 2017, 8, 51–58. [Google Scholar] [CrossRef]
- Huang, H.; Xia, H.; Guo, Z.; Huang, S.; Li, H.; Wu, Y. polarization-independent and broadband microwave metamaterial absorber based on three-dimensional structure. J. Mod. Opt. 2018, 65, 1521–1528. [Google Scholar] [CrossRef]
- Deng, G.; Xia, T.; Yang, J.; Yin, Z. Triple-band polarisation-independent metamaterial absorber at mm wave frequency band. IET Microw. Antennas Propag. 2018, 12, 1120–1125. [Google Scholar] [CrossRef]
- Singh, P.K.; Korolev, K.A.; Afsar, M.N.; Sonkusale, S. Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Appl. Phys. Lett. 2011, 99, 264101. [Google Scholar] [CrossRef]
- Huang, X.; Cao, M.; Wang, D.; Li, X.; Fan, J.; Li, X. Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene. Opt. Mater. Express 2022, 12, 811–822. [Google Scholar] [CrossRef]
- Sood, D.; Tripathi, C.C. Broadband ultrathin low-profile metamaterial microwave absorber. Appl. Phys. A 2016, 122, 332. [Google Scholar] [CrossRef]
Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|---|---|
s1 | 0.68 | l6 | 0.72 | w4 | 0.72 |
s2 | 0.52 | l7 | 0.77 | w5 | 0.56 |
l1 | 0.73 | l8 | 0.76 | w6 | 0.56 |
l2 | 0.55 | l9 | 0.68 | w7 | 0.56 |
l3 | 0.46 | w1 | 0.7 | w8 | 0.85 |
l4 | 0.74 | w2 | 0.52 | w9 | 0.53 |
l5 | 0.58 | w3 | 0.82 | p | 8.64 |
Reference | Absorption Bandwidth | Peak Absorption (dB) | Thickness (mm) | Flexibility | Fabrication |
---|---|---|---|---|---|
[26] | 18–23 GHz; 70–88 GHz | −32 | 2 | NO | Chemical vapor deposition |
[27] | 10–200 GHz | <30 | 14.5 | NO | 3D printing |
[28] | 75–110 GHz | −20 | 2 | Not mentioned | High-temperature carbonization, particle size classification, and rubber blending |
[29] | 60.4–100 GHz | −27 | Not mentioned | Not mentioned | Not mentioned |
This work | 75–110 GHz | −36 | 0.22 | Yes | PCB fabrication process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Sheng, Y.; Chen, L.; Gao, G.; Shi, M.; Yin, Z.; Yang, J. W-Band Ultra-Thin Broadband Metamaterial Absorber—Design and Applications. Photonics 2025, 12, 282. https://doi.org/10.3390/photonics12030282
Zhu J, Sheng Y, Chen L, Gao G, Shi M, Yin Z, Yang J. W-Band Ultra-Thin Broadband Metamaterial Absorber—Design and Applications. Photonics. 2025; 12(3):282. https://doi.org/10.3390/photonics12030282
Chicago/Turabian StyleZhu, Jianfei, Yiwei Sheng, Li Chen, Guoliang Gao, Minchao Shi, Zhiping Yin, and Jun Yang. 2025. "W-Band Ultra-Thin Broadband Metamaterial Absorber—Design and Applications" Photonics 12, no. 3: 282. https://doi.org/10.3390/photonics12030282
APA StyleZhu, J., Sheng, Y., Chen, L., Gao, G., Shi, M., Yin, Z., & Yang, J. (2025). W-Band Ultra-Thin Broadband Metamaterial Absorber—Design and Applications. Photonics, 12(3), 282. https://doi.org/10.3390/photonics12030282