Simulation of Coherent Beam Propagation in Laboratory and Numerical Experiments: A Comparison of Results
Abstract
:1. Introduction
2. Layout of Laboratory Experiment and Corresponding Numerical Model
3. Obtained Results
3.1. Propagation of a Beam in an Open-Loop Adaptive System. Comparison of Results Obtained in Laboratory and Numerical Experiments
3.2. Assessment of Beam Control Effectiveness in the Laboratory Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleck, J.; Morris, J.; Feit, M. Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys. A 1976, 10, 129–141. [Google Scholar]
- Marchuk, G.I. Methods of Numerical Mathematics, 2nd ed.; Springer: Berlin, Germany; New York Inc.: New York, NY, USA, 1982; 510p. [Google Scholar]
- Konyaev, P.A.; Tartakovskii, V.E.; Filimonov, G.A. Computer simulation of optical wave propagation with the use of parallel programming. Atmos. Ocean. Opt. 2011, 24, 425–431. [Google Scholar] [CrossRef]
- Konyaev, P.A.; Lukin, V.P. Computational algorithms for simulations in atmospheric optics. Appl. Opt. 2016, 55, B107–B112. [Google Scholar] [CrossRef] [PubMed]
- Konyaev, P.A. Computer simulation of adaptive optics for laser systems in atmospheric applications. Avtometriya 2012, 2, 12–19. [Google Scholar] [CrossRef]
- Martin, J.; Flatte, S.M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random Media. Appl. Opt. 1988, 27, 2111–2126. [Google Scholar] [CrossRef] [PubMed]
- Konyaev, P.; Kanev, F. Comparison of analytical and numerical estimations of laser beam spreading in turbulent atmosphere. In Proceedings of the XXV International Symposium Atmospheric and Ocean Optics (AOO19), Novosibirsk, Russia, 1–5 July 2019; Volume 11208. [Google Scholar]
- Yan, H.X.; Li, S.S.; Zhang, D.L.; Chen, S. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere. Appl. Opt. 2000, 39, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Britton, M.C. Numerical simulations of single conjugate adaptive optics systems. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Glasgow, UK, 21–25 June 2004; Volume 5490, pp. 609–616. [Google Scholar] [CrossRef]
- Jasim, S.U.; Hassan, R.N. Investigation of numerical simulation for adaptive optics system. Iraqi J. Phys. 2023, 21, 9–23. [Google Scholar] [CrossRef]
- Kiselev, V.; Berchenko, E.; Filatov, A.; Konyaev, P.; Lavrinova, L.; Lukin, V. Simulator of wave front phase distortions. Photonics 2014, 46, 34–49. [Google Scholar]
- Rukosuev, A.L.; Belousov, V.N.; Nikitin, A.N.; Sheldakova, Y.V.; Kudryashov, A.V.; Bogachev, V.A.; Volkov, M.V.; Garanin, S.G.; Starikov, F.A. Smart adaptive optical system for correcting the laser wavefront distorted by atmospheric turbulence. Quantum Electron. 2020, 50, 707–709. [Google Scholar] [CrossRef]
- Weyrauch, T.; Vorontsov, M.A.; Carhart, G.W.; Beresnev, L.A.; Rostov, A.P.; Polnau, E.E.; Liu, J.J. Experimental demonstration of coherent beam combining over a 7 km propagation path. Opt. Lett. 2011, 36, 4455–4457. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Rao, C.; Gu, N.; Qiu, Q. The influence of filter slit on the imaging performance of the solar grating spectrometer based on adaptive optics. Opt. Photonics J. 2015, 5, 303–311. [Google Scholar] [CrossRef]
- Mudge, K.A.; Silva, D.; Clare, B.A.; Grant, K.J.; Nener, B.D. Scintillation index of the free space optical channel: Phase screen modelling and experimental results. In Proceedings of the 2011 International Conference on Space Optical Systems and Applications (ICSOS), Santa Monica, CA, USA, 11–13 May 2011. [Google Scholar]
- Vorontsov, M.A.; Polnau, E. A framework for iterative phase retrieval technique integration into atmospheric adaptive optics—Part I: Wavefront sensing in strong scintillations. Photonics 2024, 11, 786. [Google Scholar] [CrossRef]
- Rytov, S.M.; Kravtsov, Y.A.; Tatarskii, V.I. Principles of Statistical Radiophysics 4: Wave Propagation Through Random Media; Springer: Berlin, Germany, 1989; 198p. [Google Scholar]
- Polynkin, P.; Peleg, A.; Klein, L.; Rhoadarmer, T.; Moloney, J. Optimized multiemitter beams for free-space optical communications through turbulent atmosphere. Opt. Lett. 2007, 32, 885–887. [Google Scholar] [CrossRef] [PubMed]
- Tyson, R.K.; Frazier, B.W. Principles of Adaptive Optics, 5th ed.; CRC Press: Boca Raton, FL, USA, 2022; 356p. [Google Scholar] [CrossRef]
- Hillerkuss, D.M.; Winter, M.; Teschke, M.; Marculescu, A.; Li, J.; Sigurdsson, G.K.; Worms, S.; Ezra, B.; Narkiss, N.; Freud, W.; et al. Simple all-optical FFT scheme enabling Tbit/s real-time signal processing. Opt. Expr. 2010, 18, 9324–9340. [Google Scholar] [CrossRef] [PubMed]
- Antoshkin, L.V.; Botygina, N.N.; Emaleev, O.N.; Lavrinova, L.N.; Lukin, V.P. Differential optical meter of the parameters of atmospheric turbulence. Atmos. Ocean. Opt. 1998, 11, 1046–1050. [Google Scholar]
- Borzilov, A.G.; Gritsuta, A.N.; Konyaev, P.A.; Lukin, V.P.; Nosov, V.V.; Soin, E.L.; Torgaev, A.V. Image jitter meter for low intensity radiation. In Proceedings of the 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russia, 4–8 July 2022; p. 12341. [Google Scholar]
- Sarazin, M.; Roddier, F. The ESO differential image motion monitor. Astron. Astrophys. 1990, 227, 294–300. [Google Scholar]
- Kanev, F.Y.; Makenova, N.A.; Veretekhin, I.D. Development of singular points in a beam passed phase screen simulating atmospheric turbulence and precision of such a screen approximation by Zernike polynomials. Photonics 2022, 9, 285. [Google Scholar] [CrossRef]
- Rouaud, M. Probability, Statistics and Estimation; Creative Commons Attribution-NonCommercial; Boudiguen, France, 2013; 181p, Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.incertitudes.fr/book.pdf&ved=2ahUKEwjXp_Dq2eOLAxWUgv0HHb1TMTwQFnoECBcQAQ&usg=AOvVaw0g5ovM8jJBYB5bbugNBOej (accessed on 16 February 2025).
Variant Number | Displacement rc, mm | Radius REff, mm | Power-in-the-Basket J |
---|---|---|---|
1 | 0.42 ± 0.01 | 0.076 ± 0.007 | 0.00 |
2 | 0.09 ± 0.01 | 0.075 ± 0.008 | 0.1 ± 0.1 |
3 | 0.70 ± 0.55 | 5.65 ± 0.5 | 0.08 ± 0.04 |
4 | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.27 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanev, F.; Rukosuev, A.; Galaktionov, I.; Sheldakova, J.; Veretekhin, I. Simulation of Coherent Beam Propagation in Laboratory and Numerical Experiments: A Comparison of Results. Photonics 2025, 12, 209. https://doi.org/10.3390/photonics12030209
Kanev F, Rukosuev A, Galaktionov I, Sheldakova J, Veretekhin I. Simulation of Coherent Beam Propagation in Laboratory and Numerical Experiments: A Comparison of Results. Photonics. 2025; 12(3):209. https://doi.org/10.3390/photonics12030209
Chicago/Turabian StyleKanev, Feodor, Alexey Rukosuev, Ilya Galaktionov, Julia Sheldakova, and Igor Veretekhin. 2025. "Simulation of Coherent Beam Propagation in Laboratory and Numerical Experiments: A Comparison of Results" Photonics 12, no. 3: 209. https://doi.org/10.3390/photonics12030209
APA StyleKanev, F., Rukosuev, A., Galaktionov, I., Sheldakova, J., & Veretekhin, I. (2025). Simulation of Coherent Beam Propagation in Laboratory and Numerical Experiments: A Comparison of Results. Photonics, 12(3), 209. https://doi.org/10.3390/photonics12030209