Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer
Abstract
1. Introduction
2. Operating Principles of GCs and Device Structure
3. Results and Discussion
3.1. Optimization of Single Polarization GCs
3.2. Polarization-Independent Grating Coupler Design Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Zhang, M.; Yu, M.; Zhu, R.; Hu, H.; Loncar, M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 2019, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.M.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Bo, F.; Cheng, Y.; Xu, J. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res. 2020, 8, 1910–1936. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Jiang, W.; Patel, R.N.; Mayor, F.M.; McKenna, T.P.; Arrangoiz-Arriola, P.; Sarabalis, C.J.; Witmer, J.D.; Van Laer, R.; Safavi-Naeini, A.H. Lithium niobate piezo-optomechanical crystals. Optica 2019, 6, 845–853. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Hao, Z.; Bo, F.; Wang, X.; Gao, F.; Li, Y.; Zhang, G.; Xu, J. Thermo-optic effects in on-chip lithium niobate microdisk resonators. Opt. Express 2016, 24, 21869–21879. [Google Scholar] [CrossRef]
- Jiang, H.; Luo, R.; Liang, H.; Chen, X.; Chen, Y.; Lin, Q. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett. 2017, 42, 3267–3270. [Google Scholar] [CrossRef]
- Agrell, E.; Karlsson, M.; Chraplyvy, A.R.; Richardson, D.J.; Krummrich, P.M.; Winzer, P.; Roberts, K.; Fischer, J.K.; Savory, S.J.; Eggleton, B.J.; et al. Roadmap of optical communications. J. Opt. 2016, 18, 063002. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ghosh, S.; Piazza, G. Lithium Niobate on Insulator (LNOI) Grating Couplers. In CLEO: Science and Innovations; Optica Publishing Group: San Jose, CA, USA, 2015. [Google Scholar]
- Snyder, B.; O’Brien, P. Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 954–959. [Google Scholar] [CrossRef]
- Baghsiahi, H.; Wang, K.; Kandulski, W.; Pitwon, R.C.A.; Selviah, D.R. Optical waveguide end facet roughness and optical coupling loss. J. Light. Technol. 2013, 31, 2659–2668. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Ruan, Z.; Gan, R.; Huang, P.; Zheng, Z.; Lu, L.; Li, J.; Guo, C.; Chen, K.; et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode. ACS Photonics 2022, 9, 2668–2675. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, Y.; Li, H.; Xu, M.; He, M.; Ke, W.; Tan, H.; Han, Y.; Li, Z.; Wang, D.; et al. High-performance polarization management devices based on thin-film lithium niobate. Light Sci. Appl. 2022, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Lu, Y.-C.; Liu, Y.-H.; Wang, L.; Na, N. Design of a Completely Vertical, Polarization-Independent Two-Dimensional Grating Coupler with High Coupling Efficiency. Sensors 2023, 23, 4662. [Google Scholar] [CrossRef] [PubMed]
- Taillaert, D.; Chong, H.; Borel, P.; Frandsen, L.; De La Rue, R.; Baets, R. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technol. Lett. 2003, 15, 1249–1251. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Hu, J.; Zhu, Y.; Cai, X.; Chen, P.; Liu, L. Two-dimensional grating coupler on silicon with a high coupling efficiency and a low polarization-dependent loss. Opt. Express 2020, 28, 4001–4009. [Google Scholar] [CrossRef]
- Cheng, Z.; Tsang, H.K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 2014, 39, 2206–2209. [Google Scholar] [CrossRef]
- Hao, T.; Sanchez-Postigo, A.; Cheben, P.; Ortega-Monux, A.; Ye, W.N. Dual-band polarization-independent subwavelength grating coupler for wavelength demultiplexing. IEEE Photonics Technol. Lett. 2020, 32, 1163–1166. [Google Scholar] [CrossRef]
- Xie, H.; Zheng, J.; Xu, P.; Yao, J.; Whitehead, J.; Majumdar, A. Ultra-compact subwavelength-grating-assisted polarization-independent directional coupler. IEEE Photonics Technol. Lett. 2019, 31, 1538–1541. [Google Scholar] [CrossRef]
- Wüster, J.; Bourgin, Y.; Feßer, P.; Behrens, A.; Sinzinger, S. Nano-imprinted subwavelength gratings as polarizing beamsplitters. J. Eur. Opt. Soc. Publ. 2021, 17, 4. [Google Scholar] [CrossRef]
- Ma, X.; Zhuang, C.; Zeng, R.; Coleman, J.J.; Zhou, W. Polarization-independent one-dimensional grating coupler design on hybrid silicon/LNOI platform. Opt. Express 2020, 28, 17113–17121. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ruan, Z.; Chen, K.; Liu, L. One-dimensional grating coupler on lithium-niobate-on-insulator for high-efficiency and polarization-independent coupling. Opt. Lett. 2023, 48, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Zhang, R.; Hao, Z.; Jia, D.; Gao, F.; Bo, F.; Zhang, G.; Xu, J. High-efficiency chirped grating couplers on lithium niobate on insulator. Opt. Lett. 2020, 45, 6651–6654. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, Y.; Ye, F.; Feng, Z.; Li, Y.; Sun, X.; Lau, K.M.; Tsang, H.K. High coupling efficiency waveguide grating couplers on lithium niobate. Opt. Lett. 2023, 48, 3267–3270. [Google Scholar] [CrossRef]
- Han, X.; Jiang, Y.; Frigg, A.; Xiao, H.; Zhang, P.; Boes, A.; Nguyen, T.G.; Yang, J.; Ren, G.; Su, Y.; et al. Single-step etched grating couplers for silicon nitride loaded lithium niobate on insulator platform. APL Photonics 2021, 6, 086108. [Google Scholar] [CrossRef]
- Jian, J.; Xu, P.; Chen, H.; He, M.; Wu, Z.; Zhou, L.; Liu, L.; Yang, C.; Yu, S. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate wave-guides. Opt. Express 2018, 26, 29651–29658. [Google Scholar] [CrossRef]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Song, J.H.; Doany, F.E.; Medhin, A.K.; Dupuis, N.; Lee, B.G.; Libsch, F.R. Polarization-independent nonuniform grating couplers on silicon-on-insulator. Opt. Lett. 2015, 40, 3941–3944. [Google Scholar] [CrossRef]
- Statkiewicz-Barabach, G.; Tarnowski, K.; Kowal, D.; Mergo, P.; Urbanczyk, W. Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders. Opt. Express 2013, 21, 8521–8534. [Google Scholar] [CrossRef]
- Gedney, S.D. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics; Springer Nature: Dordrecht, The Netherlands, 2011; ISBN 9783031005589. [Google Scholar]
- Othonos, A. Fiber bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Zaoui, W.S.; Rosa, M.F.; Vogel, W.; Berroth, M.; Butschke, J.; Letzkus, F. Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency. Opt. Express 2012, 20, B238–B243. [Google Scholar] [CrossRef]
- Chen, X.; Tsang, H.K. Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides. Opt. Lett. 2011, 36, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Benedikovic, D.; Cheben, P.; Schmid, J.H.; Xu, D.; Lapointe, J.; Wang, S.; Halir, R.; Ortega-Moñux, A.; Janz, S.; Dado, M. High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev. 2014, 8, L93–L97. [Google Scholar] [CrossRef]
- Reinisch, R.; Nevière, M.; Popov, E.; Akhouayri, H. Coupled-mode formalism and linear theory of diffraction for a simplified analysis of second harmonic generation at grating couplers. Opt. Commun. 1994, 112, 339–348. [Google Scholar] [CrossRef]
- Zeitner, U.D.; Oliva, M.; Fuchs, F.; Michaelis, D.; Benkenstein, T.; Harzendorf, T.; Kley, E.-B. High performance diffraction gratings made by e-beam lithography. Appl. Phys. A 2012, 109, 789–796. [Google Scholar] [CrossRef]
- Labbé, F.; Laila, A.M.; Ding, Y. A Polarization-Insensitive a-Si Grating Coupler on the Lithium Niobate-on-Insulator Platform. In CLEO: Science and Innovations; Optica Publishing Group: Charlotte, NC, USA, 2024. [Google Scholar]
Λ [nm] | Etch Depth [nm] | Fill Factor | θ deg | CE | |
---|---|---|---|---|---|
TE | 810 | 340 | 0.54 | 9 | 85.5% |
TM | 870 | 340 | 0.54 | 12 | 89% |
Ref. | LN Height [nm] | Metal Layer Thickness [nm] | Simulation | Experiment | PDL [dB] | Notes | ||
---|---|---|---|---|---|---|---|---|
CE | 3 dB Bandwidth [nm] TE/TM | CE | 3 dB Bandwidth [nm] TE/TM | |||||
This work | 600 | 100 | 85.5/89% | 70/120 | NA | NA | 0.14 | Hybrid GC Si on LNOI platform |
[22] | 600 | NA | 51/51% | 83/106 | NA | NA | 0.1 | Hybrid GC Si on LNOI platform |
[23] | 400 | 50 | −3.5/−3.7 dB | 40 | 3.57/4 dB | 40 | 0.69 | Uniform GC Au layer on x-cur LNOI |
[24] | 500 | 100 | 88.7/68% | 38 | 72/62% | 38 | NA | Chirp GC on z-cut LNOI with a Au layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, A.; Khalil, M.; Mehravar, L.; Xu, C.-q. Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer. Photonics 2025, 12, 111. https://doi.org/10.3390/photonics12020111
Sultan A, Khalil M, Mehravar L, Xu C-q. Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer. Photonics. 2025; 12(2):111. https://doi.org/10.3390/photonics12020111
Chicago/Turabian StyleSultan, Alaa, Mostafa Khalil, Leila Mehravar, and Chang-qing Xu. 2025. "Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer" Photonics 12, no. 2: 111. https://doi.org/10.3390/photonics12020111
APA StyleSultan, A., Khalil, M., Mehravar, L., & Xu, C.-q. (2025). Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer. Photonics, 12(2), 111. https://doi.org/10.3390/photonics12020111