Phase-Matched Design for Efficient Entangled Photon Pair Generation in 3R-MoS2 Waveguides
Abstract
1. Introduction
2. Design Strategy
3. Strip Waveguide Design
4. Quasi-Phase Matching Waveguide Design
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, P.; Ruscio, L.; Morin, O.; Rempe, G. Fusion of deterministically generated photonic graph states. Nature 2024, 629, 567–572. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, X.; Lei, X.; Zhai, L. A Concise Primer on Solid-State Quantum Emitters. IEEE J. Sel. Top. Quantum Electron. 2025, 31, 6700616. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Saleem, Y.; Li, X.; Liu, H.; Yang, C.A.; Yang, J.; Ni, H.; Niu, Z.; Meng, Y.; et al. Quantum correlations of spontaneous two-photon emission from a quantum dot. Nature 2025, 643, 1234–1239. [Google Scholar] [CrossRef]
- Laneve, A.; Rota, M.B.; Basso Basset, F.; Beccaceci, M.; Villari, V.; Oberleitner, T.; Reum, Y.; Krieger, T.M.; Buchinger, Q.; Prasad, R.; et al. Wavevector-resolved polarization entanglement from radiative cascades. Nat. Commun. 2025, 16, 6209. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yao, N.; Hao, Z.; Zhang, J.; Mao, W.; Wang, M.; Chu, W.; Wu, R.; Fang, Z.; Qiao, L.; et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett. 2019, 122, 173903. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.V.; Collins, M.J.; Broome, M.A.; Strain, M.J.; Tame, M.S.; Almeida, M.P.; Reid, M.D.; White, A.G. Deterministic generation of a two-dimensional cluster state. Science 2019, 365, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Yang, T.; Pan, J.W. Experimental Multiparticle Entanglement Swapping for Quantum Networking. Phys. Rev. Lett. 2009, 103, 020501. [Google Scholar] [CrossRef]
- Villar, A.; Lohrmann, A.; Ling, A. Experimental entangled photon pair generation using crystals with parallel optical axes. Opt. Express 2018, 26, 12396. [Google Scholar] [CrossRef]
- Elshaari, A.W.; Pernice, W.; Srinivasan, K.; Benson, O.; Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 2020, 14, 285–298. [Google Scholar] [CrossRef]
- Zhou, X.; Zhai, L.; Liu, J. Epitaxial quantum dots: A semiconductor launchpad for photonic quantum technologies. Photonics Insights 2023, 1, R07. [Google Scholar] [CrossRef]
- Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear optics with two-dimensional layered materials. Adv. Mater. 2018, 30, 1705963. [Google Scholar] [CrossRef]
- Xu, X.; Trovatello, C.; Mooshammer, F.; Shao, Y.; Zhang, S.; Yao, K.; Basov, D.N.; Cerullo, G.; Schuck, P.J. Towards compact phase-matched and waveguided nonlinear optics in atomically layered semiconductors. Nat. Photonics 2022, 16, 698–706. [Google Scholar] [CrossRef]
- Tang, J.; Gao, M.; Zhang, Q.; Yang, Y. Giant second-harmonic generation in rhombohedral transition metal dichalcogenide metasurfaces. Opt. Commun. 2025, 584, 131825. [Google Scholar] [CrossRef]
- Xu, D.; Peng, Z.H.; Trovatello, C.; Cheng, S.W.; Xu, X.; Sternbach, A.; Basov, D.N.; Schuck, P.J.; Delor, M. Spatiotemporal imaging of nonlinear optics in van der Waals waveguides. Nat. Nanotechnol. 2025, 20, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Qin, H.; de Ceglia, D.; Yang, W.; Shameli, M.A.; Nauman, M.; Morales, R.C.; Yan, J.; Wang, C.; Qiu, S.; et al. Giant Second Harmonic Generation from 3R-MoS2 Metasurfaces. arXiv 2025, arXiv:2503.20161. [Google Scholar]
- Trolle, M.L.; Tsao, Y.C.; Pedersen, K.; Pedersen, T.G. Observation of excitonic resonances in the second harmonic spectrum of MoS2. Phys. Rev. B 2015, 92, 161409. [Google Scholar] [CrossRef]
- Zograf, G.; Küçüköz, B.; Polyakov, A.Y.; Yankovich, A.B.; Ranjan, A.; Bancerek, M.; Agrawal, A.V.; Olsson, E.; Wieczorek, W.; Antosiewicz, T.J.; et al. Ultrathin 3R-MoS2 metasurfaces with atomically precise edges for efficient nonlinear nanophotonics. Commun. Phys. 2025, 8, 271. [Google Scholar] [CrossRef]
- Seidt, L.; Weber, T.; Seredin, A.A.; Possmayer, T.; Savelev, R.; Petrov, M.I.; Maier, S.A.; Tittl, A.; de S. Menezes, L.; Sortino, L. Ultrafast all-optical switching in nonlinear 3R-MoS2 van der Waals metasurfaces. npj Nanophotonics 2025, 2, 37. [Google Scholar] [CrossRef]
- Qin, B.; Ma, C.; Guo, Q.; Li, X.; Wei, W.; Ma, C.; Wang, Q.; Liu, F.; Zhao, M.; Xue, G.; et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 2024, 385, 99–104. [Google Scholar] [CrossRef]
- Wang, L.; Qi, J.; Wei, W.; Wu, M.; Zhang, Z.; Li, X.; Sun, H.; Guo, Q.; Cao, M.; Wang, Q.; et al. Bevel-edge epitaxy of ferroelectric rhombohedral boron nitride single crystal. Nature 2024, 629, 74–79. [Google Scholar] [CrossRef]
- Liu, L.; Li, T.; Gong, X.; Wen, H.; Zhou, L.; Feng, M.; Zhang, H.; Zou, N.; Wu, S.; Li, Y.; et al. Homoepitaxial growth of large-area rhombohedral-stacked MoS2. Nat. Mater. 2025, 24, 1195–1202. [Google Scholar] [CrossRef]
- Weissflog, M.A.; Fedotova, A.; Tang, Y.; Santos, E.A.; Laudert, B.; Shinde, S.; Abtahi, F.; Afsharnia, M.; Pérez Pérez, I.; Ritter, S.; et al. A tunable transition metal dichalcogenide entangled photon-pair source. Nat. Commun. 2024, 15, 7600. [Google Scholar] [CrossRef]
- Feng, J.; Wu, Y.; Duan, R.; Wang, J.; Chen, W.; Qin, J.; Liu, Z.; Guo, G.C.; Ren, X.F.; Qiu, C.W. Polarization-entangled photon-pair source with van der Waals 3R-WS2 crystal. eLight 2024, 4, 16. [Google Scholar] [CrossRef]
- Lyu, X.; Kallioniemi, L.; Hong, H.; Qu, R.; Zhang, Y.; Zúñiga-Perez, J.; Liu, K.; Gao, W. A tunable entangled photon-pair source based on a Van der Waals insulator. Nat. Commun. 2025, 16, 1899. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Huang, C.; Ma, C.; Qi, J.; Shi, X.; Liu, C.; Wu, S.; Sun, Z.; Wang, E.; Liu, K. Twist-phase-matching in two-dimensional materials. Phys. Rev. Lett. 2023, 131, 233801. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Sripathy, K.; Qin, H.; Lu, Z.; Guccione, G.; Janousek, J.; Zhu, Y.; Hasan, M.M.; Iwasa, Y.; Lam, P.K.; et al. Quasi-phase-matching enabled by van der Waals stacking. Nat. Commun. 2024, 15, 9979. [Google Scholar] [CrossRef]
- Trovatello, C.; Ferrante, C.; Yang, B.; Bajo, J.; Braun, B.; Peng, Z.H.; Xu, X.; Jenke, P.K.; Ye, A.; Delor, M.; et al. Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors. Nat. Photonics 2025, 19, 291–299. [Google Scholar] [CrossRef]
- Dai, D.; Tang, Y.; Bowers, J.E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 2012, 20, 13425–13439. [Google Scholar] [CrossRef]
- Liu, J.; Duan, J.; Zhu, P.; Xia, G.; Hong, Q.; Zhang, K.; Zhu, Z.; Qin, S.; Xu, P. Modal phase-matching in thin-film lithium niobate waveguides for efficient generation of entangled photon pairs. Opt. Express 2024, 32, 40629–40639. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, X.; Andrade, N.; Venkataraman, V.; Ren, X.F.; Guo, G.C.; Lončar, M. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 2017, 25, 6963–6973. [Google Scholar] [CrossRef]
- Imbrock, J.; Wesemann, L.; Kroesen, S.; Ayoub, M.; Denz, C. Waveguide-integrated three-dimensional quasi-phase-matching structures. Optica 2020, 7, 28–34. [Google Scholar] [CrossRef]
- Nitiss, E.; Hu, J.; Stroganov, A.; Brès, C.S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 2022, 16, 134–141. [Google Scholar] [CrossRef]
- Wang, J.F.; Yan, F.F.; Li, Q.; Liu, Z.H.; Liu, H.; Guo, G.P.; Guo, L.P.; Zhou, X.; Cui, J.M.; Wang, J.; et al. Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Phys. Rev. Lett. 2020, 124, 223601. [Google Scholar] [CrossRef] [PubMed]
- PsiQuantum Team. A manufacturable platform for photonic quantum computing. Nature 2025, 641, 876–883. [Google Scholar] [CrossRef]
- Guo, Q.; Qi, X.Z.; Zhang, L.; Gao, M.; Hu, S.; Zhou, W.; Zang, W.; Zhao, X.; Wang, J.; Yan, B.; et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 2023, 613, 53–59. [Google Scholar] [CrossRef]
- Pelgrin, V.; Yoon, H.; Cassan, E.; Sun, Z. Hybrid integration of 2D materials for on-chip nonlinear photonics. Light Adv. Manuf. 2023, 4, 311–333. [Google Scholar] [CrossRef]
- Azimi, A.; Barrier, J.; Barreda, A.; Bauer, T.; Bouzari, F.; Brokkelkamp, A.; de Mongeot, F.B.; Parsons, T.; Christianen, P.; Conesa-Boj, S.; et al. Photonics in Flatland: Challenges and Opportunities for Nanophotonics with 2D Semiconductors. arXiv 2025, arXiv:2507.00336. [Google Scholar] [CrossRef]
- Gyger, S.; Zichi, J.; Schweickert, L.; Elshaari, A.W.; Steinhauer, S.; Covre da Silva, S.F.; Rastelli, A.; Zwiller, V.; Jöns, K.D.; Errando-Herranz, C. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 2021, 12, 1408. [Google Scholar] [CrossRef]
- Zhai, L.; Löbl, M.C.; Jahn, J.P.; Huo, Y.; Treutlein, P.; Schmidt, O.G.; Rastelli, A.; Warburton, R.J. Large-range frequency tuning of a narrow-linewidth quantum emitter. Appl. Phys. Lett. 2020, 117, 083106. [Google Scholar] [CrossRef]
- Uppu, R.; Midolo, L.; Zhou, X.; Carolan, J.; Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 2021, 16, 1308–1317. [Google Scholar] [CrossRef]
- Spinnler, C.; Nguyen, G.N.; Wang, Y.; Zhai, L.; Javadi, A.; Erbe, M.; Scholz, S.; Wieck, A.D.; Ludwig, A.; Lodahl, P.; et al. A single-photon emitter coupled to a phononic-crystal resonator in the resolved-sideband regime. Nat. Commun. 2024, 15, 9509. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Zhang, X.; Lei, X.; Zhai, L. Phase-Matched Design for Efficient Entangled Photon Pair Generation in 3R-MoS2 Waveguides. Photonics 2025, 12, 1100. https://doi.org/10.3390/photonics12111100
Yu S, Zhang X, Lei X, Zhai L. Phase-Matched Design for Efficient Entangled Photon Pair Generation in 3R-MoS2 Waveguides. Photonics. 2025; 12(11):1100. https://doi.org/10.3390/photonics12111100
Chicago/Turabian StyleYu, Shicheng, Xiaojie Zhang, Xia Lei, and Liang Zhai. 2025. "Phase-Matched Design for Efficient Entangled Photon Pair Generation in 3R-MoS2 Waveguides" Photonics 12, no. 11: 1100. https://doi.org/10.3390/photonics12111100
APA StyleYu, S., Zhang, X., Lei, X., & Zhai, L. (2025). Phase-Matched Design for Efficient Entangled Photon Pair Generation in 3R-MoS2 Waveguides. Photonics, 12(11), 1100. https://doi.org/10.3390/photonics12111100

