Efficient Loading of an Yb MOT on the 1S0 → 1P1 Transition
Abstract
1. Introduction
2. Experimental System
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daley, A.J.; Boyd, M.M.; Ye, J.; Zoller, P. Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett. 2008, 101, 170504. [Google Scholar] [CrossRef]
- Gorshkov, A.V.; Rey, A.M.; Daley, A.J.; Boyd, M.M.; Ye, J.; Zoller, P.; Lukin, M.D. Alkaline-earth-metal atoms as few-qubit quantum registers. Phys. Rev. Lett. 2009, 102, 110503. [Google Scholar] [CrossRef]
- Zhang, X.; Bishof, M.; Bromley, S.L.; Kraus, C.V.; Safronova, M.S.; Zoller, P.; Rey, A.M.; Ye, J. Spectroscopic observation of SU (N)-symmetric interactions in Sr orbital magnetism. Science 2014, 345, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Cheng, Y.; Zhai, H.; Zhang, P. Orbital Feshbach resonance in alkali-earth atoms. Phys. Rev. Lett. 2015, 115, 135301. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Mancini, M.; Cappellini, G.; Livi, L.; Sias, C.; Catani, J.; Inguscio, M.; Fallani, L. Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance. Phys. Rev. Lett. 2015, 115, 265301. [Google Scholar] [CrossRef] [PubMed]
- Höfer, M.; Riegger, L.; Scazza, F.; Hofrichter, C.; Fernandes, D.; Parish, M.; Levinsen, J.; Bloch, I.; Fölling, S. Observation of an orbital interaction-induced Feshbach resonance in Yb 173. Phys. Rev. Lett. 2015, 115, 265302. [Google Scholar] [CrossRef]
- Jin, R.B.; Zeng, Z.Q.; You, C.; Yuan, C. Quantum interferometers: Principles and applications. Prog. Quantum Electron. 2024, 96, 100519. [Google Scholar] [CrossRef]
- Biedermann, G.; Wu, X.; Deslauriers, L.; Roy, S.; Mahadeswaraswamy, C.; Kasevich, M. Testing gravity with cold-atom interferometers. Phys. Rev. A 2015, 91, 033629. [Google Scholar] [CrossRef]
- Zheng, X.; Dolde, J.; Lochab, V.; Merriman, B.N.; Li, H.; Kolkowitz, S. Differential clock comparisons with a multiplexed optical lattice clock. Nature 2022, 602, 425–430. [Google Scholar] [CrossRef]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 2020, 14, 411–415. [Google Scholar]
- Bloom, B.; Nicholson, T.; Williams, J.; Campbell, S.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S.; Ye, J. An optical lattice clock with accuracy and stability at the 10–18 level. Nature 2014, 506, 71–75. [Google Scholar] [CrossRef]
- Beloy, K.; Hinkley, N.; Phillips, N.B.; Sherman, J.A.; Schioppo, M.; Lehman, J.; Feldman, A.; Hanssen, L.M.; Oates, C.W.; Ludlow, A.D. Atomic clock with 1× 10–18 room-temperature blackbody Stark uncertainty. Phys. Rev. Lett. 2014, 113, 260801. [Google Scholar] [CrossRef]
- Plotkin-Swing, B.; Wirth, A.; Gochnauer, D.; Rahman, T.; McAlpine, K.E.; Gupta, S. Crossed-beam slowing to enhance narrow-line ytterbium magneto-optic traps. Rev. Sci. Instrum. 2020, 91, 093201. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Yu, L.; Song, B. Two-color magneto-optical trapping of ytterbium atoms. arXiv 2025, arXiv:2503.24383. [Google Scholar]
- Saskin, S.; Wilson, J.; Grinkemeyer, B.; Thompson, J. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 2019, 122, 143002. [Google Scholar] [CrossRef]
- Dörscher, S.; Thobe, A.; Hundt, B.; Kochanke, A.; Le Targat, R.; Windpassinger, P.; Becker, C.; Sengstock, K. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup. Rev. Sci. Instrum. 2013, 84, 043109. [Google Scholar]
- Tiecke, T.; Gensemer, S.; Ludewig, A.; Walraven, J. High-flux two-dimensional magneto-optical-trap source for cold lithium atoms. Phys. Rev. A At. Mol. Opt. Phys. 2009, 80, 013409. [Google Scholar] [CrossRef]
- Lamporesi, G.; Donadello, S.; Serafini, S.; Ferrari, G. Compact high-flux source of cold sodium atoms. Rev. Sci. Instrum. 2013, 84, 063102. [Google Scholar]
- Wang, X.; Muthu-Arachchige, T.; Legrand, T.; Müller, L.; Alt, W.; Hofferberth, S.; Uruñuela, E. Two-color ytterbium magneto-optical trap in a compact dual-chamber setup. Phys. Rev. Appl. 2025, 23, 014004. [Google Scholar] [CrossRef]
- Phillips, W.D.; Metcalf, H. Laser deceleration of an atomic beam. Phys. Rev. Lett. 1982, 48, 596. [Google Scholar] [CrossRef]
- Courtillot, I.; Quessada, A.; Kovacich, R.; Zondy, J.; Landragin, A.; Clairon, A.; Lemonde, P. Efficient cooling and trapping of strontium atoms. Opt. Lett. 2003, 28, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Subhankar, S.; Britton, J.W. A practical guide to feedback control for Pound–Drever–Hall laser linewidth narrowing. Appl. Phys. B 2025, 131, 146. [Google Scholar] [CrossRef]
- Wodey, E.; Rengelink, R.; Meiners, C.; Rasel, E.; Schlippert, D. A robust, high-flux source of laser-cooled ytterbium atoms. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 035301. [Google Scholar] [CrossRef]
- Li, Z.-L.; Shi, Z.-L.; Wang, P.-J. Design and research of two-dimensional magneto-optical trap of sodium atom using permanent magnets. Acta Phys. Sin. 2020, 69, 126701. [Google Scholar] [CrossRef]
- Nosske, I.; Couturier, L.; Hu, F.; Tan, C.; Qiao, C.; Blume, J.; Jiang, Y.; Chen, P.; Weidemüller, M. Two-dimensional magneto-optical trap as a source for cold strontium atoms. Phys. Rev. A 2017, 96, 053415. [Google Scholar] [CrossRef]
- Alcock, C.B.; Itkin, V.; Horrigan, M. Vapour pressure equations for the metallic elements: 298–2500 K. Can. Metall. Q. 1984, 23, 309–313. [Google Scholar] [CrossRef]
- Raha, M.; Chen, S.; Phenicie, C.M.; Ourari, S.; Dibos, A.M.; Thompson, J.D. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 2020, 11, 1605. [Google Scholar] [CrossRef] [PubMed]
- Berglund, M.; Wieser, M.E. Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 397–410. [Google Scholar] [CrossRef]






| Isotope | Statistics | Abundance (%) | Δf (MHz) | L (106 Atoms/s) |
|---|---|---|---|---|
| 171Yb (F = 3/2) | Fermionic | / | 860 | 0.886 |
| 172Yb | Bosonic | 21.9 | 540 | 0.648 |
| 173Yb (F = 7/2) | Fermionic | / | 600 | 0.003 |
| 174Yb | Bosonic | 31.8 | 0 | 2.171 |
| 176Yb | Bosonic | 12.7 | −500 | 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wang, S.; Jian, J.; Zhang, Q.; Liu, W.; Wu, J.; Li, Y.; Ma, J. Efficient Loading of an Yb MOT on the 1S0 → 1P1 Transition. Photonics 2025, 12, 1064. https://doi.org/10.3390/photonics12111064
Zhao Z, Wang S, Jian J, Zhang Q, Liu W, Wu J, Li Y, Ma J. Efficient Loading of an Yb MOT on the 1S0 → 1P1 Transition. Photonics. 2025; 12(11):1064. https://doi.org/10.3390/photonics12111064
Chicago/Turabian StyleZhao, Zhufang, Shunxiang Wang, Jun Jian, Quanxin Zhang, Wenliang Liu, Jizhou Wu, Yuqing Li, and Jie Ma. 2025. "Efficient Loading of an Yb MOT on the 1S0 → 1P1 Transition" Photonics 12, no. 11: 1064. https://doi.org/10.3390/photonics12111064
APA StyleZhao, Z., Wang, S., Jian, J., Zhang, Q., Liu, W., Wu, J., Li, Y., & Ma, J. (2025). Efficient Loading of an Yb MOT on the 1S0 → 1P1 Transition. Photonics, 12(11), 1064. https://doi.org/10.3390/photonics12111064

