Wavelength Calibration for an External Cavity Diode Laser Using a Polynomial Dual-Cosine Model
Abstract
1. Introduction
2. Theoretical Principles of Wavelength Drift
3. Wavelength Calibration
3.1. Polynomial Dual-Cosine Model
- (1)
- Etalon Signal Processing: The etalon interference signal is input, and peak detection is performed to record the peak positions of etalon signals (denoted as ) and the number of interference peaks (denoted as ).
- (2)
- Relative Wavenumber Calculation: The measured relative wavenumber (denoted as , = SR) is calculated using and the etalon’s free spectral range (FSR).
- (3)
- Polynomial Residual Analysis: Polynomial fitting is commonly employed to establish the relationship between and . Then the fitted relative wavenumber (denoted as ) can be obtained. The residuals between and are defined as (). The process of polynomial fitting is shown in Figure 4.
- (4)
- Dual-Cosine Parameter Initialization: The periodic amplitudes of are extracted as and . The periodic intervals of are extracted as and . These parameters are subsequently used as initial parameters in Equation (2) to iteratively fit the relative wavenumber (denoted as ).
- (5)
- Iterative Optimization: The residual error between and is denoted as (). When satisfies a convergence threshold ( ≤ ±0.01), the calibrated is output and converted to the absolute wavenumber using a reference absorption line. The polynomial order has an effect on the values of ; then , , , and in the dual-cosine function need dynamic adjustment to satisfy the convergence threshold of . Hence, the needs to be iteratively incremented to optimize global nonlinear compensation while the dual-cosine terms suppress the periodic residuals of . This adaptive refinement cycle progressively enhances calibration precision, and the results are presented in Figure 5. The RMSE for is 0.0035. Compared to Figure 4, the RMSE and residual of the relative wavenumber in Figure 5 are, respectively, reduced by a factor of 5.9 and 5. The polynomial dual-cosine wavelength-calibrated spectrum has superior agreement with the simulated spectrum. Moreover, spectral fitting shows good linearity and high similarity, indicating that the polynomial dual-cosine model can effectively address the wavelength drift issue of the ECDL.
3.2. An Impact Analysis of the Polynomial Order in the PDC Model
3.3. An Impact Analysis of the Scanning Range in the ECDL
4. Experimental Setup and Discussions
4.1. Experimental Setup
4.2. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TDLAS | tunable diode laser absorption spectroscopy |
ECDL | external cavity diode laser |
PDC | polynomial dual-cosine model |
References
- Bendana, F.A.; Lee, D.D.; Wei, C.; Pineda, D.I.; Spearrin, R.M. Line mixing and broadening in the v (1 → 3) first overtone bandhead of carbon monoxide at high temperatures and high pressures. J. Quant. Spectrosc. Radiat. Transfer 2019, 239, 106636. [Google Scholar] [CrossRef]
- Mattick, A.T.; Kurnit, N.A.; Javan, A. Velocity dependence of collision broadening cross sections in NH3. Chem. Phys. Lett. 1976, 38, 176–180. [Google Scholar] [CrossRef]
- Sonker, M.K.; Dewal, M.L. Simulation of thin film thermocouple for high temperature measurement applicable to missiles. Def. Sci. J. 2015, 65, 385–389. [Google Scholar] [CrossRef]
- Werle, P. A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta A 1998, 54, 197–236. [Google Scholar] [CrossRef]
- Lackner, M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries-a review. Rev. Chm Eng. 2007, 23, 65–147. [Google Scholar] [CrossRef]
- Schulz, C.; Dreizler, A.; Ebert, V.; Wolfrum, J. Combustion diagnostics. In Handbook of Experimental Ffuid Mechanics; Tropea, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1241–1315. [Google Scholar]
- Bolshov, M.A.; Kuritsyn, Y.A.; Romanovskii, Y.V. Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochim. Acta B 2015, 106, 45–66. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Wagner, S.; Meffert, C.; Schulz, C.; Ebert, V. High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine. Appl. Phys. B 2012, 109, 521–532. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, W.; Wang, M.; Chen, J.; Shen, Y.; Wei, Y.; Yu, X.; Li, F.; Zeng, H. Tunable diode laser absorption spectroscopy measurements of high-pressure ammonium dinitramide combustion. Aerosp. Sci. Technol. 2015, 45, 140–149. [Google Scholar] [CrossRef]
- Sanders, S.T.; Baldwin, J.A.; Jenkins, T.P.; Baer, D.S.; Hanson, R.K. Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines. Proc. Combust. Inst. 2000, 28, 587–594. [Google Scholar] [CrossRef]
- Kranendonk, L.A.; Caswell, A.W.; Sanders, S.T. Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra. Appl. Opt. 2007, 46, 4117–4124. [Google Scholar] [CrossRef] [PubMed]
- Kranendonk, L.A.; Walewski, J.W.; Kim, T.; Sanders, S.T. Wavelength-agile sensor applied for HCCI engine measurements. Proc. Combust. Inst. 2005, 30, 1619–1627. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Z.Y.; Deng, H.; Yang, W.; Qi, X.; Li, J.; Kan, R. High—Pressure gas temperature sensing for exit plane of aero—Engine combustor using tunable diode laser absorption spectroscopy. Microw. Opt. Technol. Lett. 2023, 66, e33897. [Google Scholar] [CrossRef]
- Hagen, C.L.; Sanders, S.T. Investigation of multi-species (H2O2 and H2O) sensing and thermometry in a HCCI engine by wavelengthagile absorption spectroscopy. Meas. Sci. Technol. 2007, 18, 1992–1998. [Google Scholar] [CrossRef]
- Liu, X.; Jeffries, J.B.; Hanson, R.K. Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra. Meas. Sci. Technol. 2007, 18, 1185–1194. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, W.; Kamimoto, T.; Deguchi, Y.; Yan, J.; Yao, S.; Girase, K.; Jeon, M.-G.; Kidoguchi, Y.; Nada, Y. Two-Dimensional Temperature Measurement in a High-Temperature and High-Pressure Combustor Using Computed Tomography Tunable Diode Laser Absorption Spectroscopy (CT-TDLAS) with a Wide-Scanning Laser at 1335–1375 nm. Appl. Spectrosc. 2020, 74, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Goldenstein, C.S.; Spearring, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951–19965. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, D.; Li, Y.; Zheng, K.; Guan, G.; Zheng, C.; Jin, W.; Wai, P.K.A. High-speed multi-gas sensing with a broadband Fourier domain mode-locked laser. J. Lightwave Technol. 2024, 43, 2936–2942. [Google Scholar] [CrossRef]
- Werblinski, T.; Fendt, P.; Zigan, L.; Will, S. High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy. Appl. Opt. 2017, 56, 4443–4453. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y. New temperature measurement method based on light-induced thermoelastic spectroscopy. Opt. Lett. 2023, 48, 5687–5690. [Google Scholar] [CrossRef]
- Ma, L.; Li, X.; Sanders, S.T.; Caswell, A.W.; Roy, S.; Plemmons, D.H.; Gord, J.R. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt. Express 2013, 21, 1152–1162. [Google Scholar] [CrossRef]
- Hasan, G.M.; Hasan, M.; Liu, P.; Rad, M.; Bernier, E.; Hall, T.J. Optical wavelength meter with machine learning enhanced precision. Photonics Res. 2023, 11, 420–430. [Google Scholar] [CrossRef]
- Wang, D.; Han, T.; Qian, H.H.; Liu, Z.Y.; Ding, Z.H. An absolute wave-number calibration method based on characteristic spectral line and constrained fitting phase. Acta Phys. Sin. 2022, 71, 214203. [Google Scholar] [CrossRef]
- Xie, J.D.; Yan, L.P.; Chen, B.Y.; Yang, W.L. Automatic offset-frequency locking of external cavity diode laser in wide wavelength range. Opt. Precis. Eng. 2021, 29, 211–219. [Google Scholar] [CrossRef]
- Ai, S.; Deng, H.; Huang, A.; Xia, H.H.; Chen, C.G.; Kan, R.F. Nemerical study on inffuencing factors of thermometry method based broadband absorption spectra. Acta Opt. Sin. 2022, 42, 1830003. (In Chinese) [Google Scholar]
- Ai, S.; Xu, Z.; Huang, A.; Deng, H.; Niu, R.; Kan, R. A wide-range temperature sensor with a single diode laser based on H2O absorption spectra near 1850.5 nm. Front. Phys. 2024, 12, 1488578. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, S.; Kan, R.; Du, C.; Yu, Z.; Xing, W.; Shi, D.; Chen, C.; Niu, R.; Xu, Z.; Huang, A. Wavelength Calibration for an External Cavity Diode Laser Using a Polynomial Dual-Cosine Model. Photonics 2025, 12, 964. https://doi.org/10.3390/photonics12100964
Ai S, Kan R, Du C, Yu Z, Xing W, Shi D, Chen C, Niu R, Xu Z, Huang A. Wavelength Calibration for an External Cavity Diode Laser Using a Polynomial Dual-Cosine Model. Photonics. 2025; 12(10):964. https://doi.org/10.3390/photonics12100964
Chicago/Turabian StyleAi, Suman, Ruifeng Kan, Cheng Du, Zhongqiang Yu, Weiqi Xing, Dingfeng Shi, Chuge Chen, Rantong Niu, Zhenyu Xu, and An Huang. 2025. "Wavelength Calibration for an External Cavity Diode Laser Using a Polynomial Dual-Cosine Model" Photonics 12, no. 10: 964. https://doi.org/10.3390/photonics12100964
APA StyleAi, S., Kan, R., Du, C., Yu, Z., Xing, W., Shi, D., Chen, C., Niu, R., Xu, Z., & Huang, A. (2025). Wavelength Calibration for an External Cavity Diode Laser Using a Polynomial Dual-Cosine Model. Photonics, 12(10), 964. https://doi.org/10.3390/photonics12100964