Universal Phase Correction for Quantum State Transfer in One-Dimensional Topological Spin Chains
Abstract
1. Introduction
2. Phase Accumulation of QST
3. Results
3.1. Normal SSH Transport
3.2. Edge-Defect Topological Transport
3.3. Topological Interface Transport
3.4. Rice-Mele Transfer Schemes
3.5. Non-Adiabatic Topological Transfer
3.6. Origin of Phase Accumulation
4. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Phase Accumulation vs. Site Numbers
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Bose, S. Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 2003, 91, 207901. [Google Scholar] [CrossRef] [PubMed]
- Bose, S. Quantum communication through spin chain dynamics: An introductory overview. Contemp. Phys. 2007, 48, 13–30. [Google Scholar] [CrossRef]
- Di Franco, C.; Paternostro, M.; Kim, M.S. Perfect state transfer on a spin chain without state initialization. Phys. Rev. Lett. 2008, 101, 230502. [Google Scholar] [CrossRef]
- Chudzicki, C.; Strauch, F.W. Parallel state transfer and efficient quantum routing on quantum networks. Phys. Rev. Lett. 2010, 105, 260501. [Google Scholar] [CrossRef]
- Pemberton-Ross, P.J.; Kay, A. Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 2011, 106, 020503. [Google Scholar] [CrossRef]
- Eldredge, Z.; Gong, Z.X.; Young, J.T.; Moosavian, A.H.; Foss-Feig, M.; Gorshkov, A.V. Fast quantum state transfer and entanglement renormalization using long-range interactions. Phys. Rev. Lett. 2017, 119, 170503. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.J.; Shore, B.W. Coherent dynamics of N-level atoms and molecules. III. An analytically soluble periodic case. Phys. Rev. A 1979, 20, 539–544. [Google Scholar] [CrossRef]
- Christandl, M.; Datta, N.; Ekert, A.; Landahl, A.J. Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 2004, 92, 187902. [Google Scholar] [CrossRef]
- Plenio, M.B.; Hartley, J.; Eisert, J. Dynamics and manipulation of mntanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 2004, 6, 36. [Google Scholar] [CrossRef]
- Zhang, J.; Long, G.L.; Zhang, W.; Deng, Z.; Liu, W.; Lu, Z. Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance. Phys. Rev. A 2005, 72, 012331. [Google Scholar] [CrossRef]
- Bellec, M.; Nikolopoulos, G.M.; Tzortzakis, S. Faithful communication Hamiltonian in photonic lattices. Opt. Lett. 2012, 37, 4504. [Google Scholar] [CrossRef]
- Perez-Leija, A.; Keil, R.; Kay, A.; Moya-Cessa, H.; Nolte, S.; Kwek, L.C.; Rodríguez-Lara, B.M.; Szameit, A.; Christodoulides, D.N. Coherent quantum transport in photonic lattices. Phys. Rev. A 2013, 87, 012309. [Google Scholar] [CrossRef]
- Chapman, R.J.; Santandrea, M.; Huang, Z.; Corrielli, G.; Crespi, A.; Yung, M.H.; Osellame, R.; Peruzzo, A. Experimental perfect state transfer of an entangled photonic qubit. Nat. Commun. 2016, 7, 11339. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Lin, S.; Zhang, L.; Yin, P.; Huang, P.; Duan, C.; Jiang, L.; Du, J. Perfect coherent transfer in an on-chip reconfigurable nanoelectromechanical network. Phys. Rev. B 2020, 101, 174303. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Han, J.; Chen, T.; Xu, Y.; Cai, W.; Wang, H.; Song, Y.; Xue, Z.Y.; Yin, Z.-q.; et al. Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl. 2018, 10, 054009. [Google Scholar] [CrossRef]
- Yao, N.; Laumann, C.; Gorshkov, A.; Weimer, H.; Jiang, L.; Cirac, J.; Zoller, P.; Lukin, M. Topologically protected quantum state transfer in a chiral spin liquid. Nat. Commun. 2013, 4, 1585. [Google Scholar] [CrossRef]
- Almeida, G.M.A.; Ciccarello, F.; Apollaro, T.J.G.; Souza, A.M.C. Quantum-state transfer in staggered coupled-cavity arrays. Phys. Rev. A 2016, 93, 032310. [Google Scholar] [CrossRef]
- Dlaska, C.; Vermersch, B.; Zoller, P. Robust quantum state transfer via topologically protected edge channels in dipolar arrays. Quantum Sci. Technol. 2017, 2, 015001. [Google Scholar] [CrossRef]
- Lang, N.; Büchler, H.P. Topological networks for quantum communication between distant qubits. npj Quantum Inf. 2017, 3, 47. [Google Scholar] [CrossRef]
- Mei, F.; Chen, G.; Tian, L.; Zhu, S.L.; Jia, S. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A 2018, 98, 012331. [Google Scholar] [CrossRef]
- Longhi, S.; Giorgi, G.L.; Zambrini, R. Landau–Zener topological quantum state transfer. Adv. Quantum Technol. 2019, 2, 1800090. [Google Scholar] [CrossRef]
- Longhi, S. Topological pumping of edge states via adiabatic passage. Phys. Rev. B 2019, 99, 155150. [Google Scholar] [CrossRef]
- Palaiodimopoulos, N.E.; Brouzos, I.; Diakonos, F.K.; Theocharis, G. Fast and robust quantum state transfer via a topological chain. Phys. Rev. A 2021, 103, 052409. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, C.; Cai, H.; Wang, D.W. Gap-protected transfer of topological defect states in photonic lattices. APL Photonics 2021, 6, 030803. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Gong, J.; Liu, Y.X. Arbitrary entangled state transfer via a topological qubit chain. Phys. Rev. A 2022, 106, 052411. [Google Scholar] [CrossRef]
- Tian, T.; Cai, H.; Zhang, L.; Zhang, Y.; Duan, C.K.; Zhou, J. Nonadiabatic topological transfer in a nanomechanical phononic lattice. Phys. Rev. B 2024, 109, 125123. [Google Scholar] [CrossRef]
- Guo, J.K.; Wu, J.L.; Cao, J.; Zhang, S.; Su, S.L. Shortcut engineering for accelerating topological quantum state transfers in optomechanical lattices. Phys. Rev. A 2024, 110, 043510. [Google Scholar] [CrossRef]
- Han, J.X.; Wu, J.L.; Yuan, Z.H.; Chen, Y.J.; Xia, Y.; Jiang, Y.Y.; Song, J. Fast and controllable topological excitation transfers in hybrid magnon-photon systems. Phys. Rev. Appl. 2024, 21, 014057. [Google Scholar] [CrossRef]
- Yung, M.H. Quantum speed limit for perfect state transfer in one dimension. Phys. Rev. A 2006, 74, 030303. [Google Scholar] [CrossRef]
- Balachandran, V.; Gong, J. Adiabatic quantum transport in a spin chain with a moving potential. Phys. Rev. A 2008, 77, 012303. [Google Scholar] [CrossRef]
- Petrosyan, D.; Nikolopoulos, G.M.; Lambropoulos, P. State transfer in static and dynamic spin chains with disorder. Phys. Rev. A 2010, 81, 042307. [Google Scholar] [CrossRef]
- Tao, Z.; Huang, W.; Niu, J.; Zhang, L.; Ke, Y.; Gu, X.; Lin, L.; Qiu, J.; Sun, X.; Yang, X.; et al. Emulating thouless pumping in the interacting Rice-Mele model using superconducting qutrits. Front. Phys. 2025, 20, 33202. [Google Scholar] [CrossRef]
- Shi, Y.H.; Liu, Y.; Zhang, Y.R.; Xiang, Z.; Huang, K.; Liu, T.; Wang, Y.Y.; Zhang, J.C.; Deng, C.L.; Liang, G.H.; et al. Quantum simulation of topological zero modes on a 41-qubit superconducting processor. Phys. Rev. Lett. 2023, 131, 080401. [Google Scholar] [CrossRef]
- Jin, F.; Jiang, S.; Zhu, X.; Bao, Z.; Shen, F.; Wang, K.; Zhu, Z.; Xu, S.; Song, Z.; Chen, J.; et al. Topological prethermal strong zero modes on superconducting processors. Nature 2025, 645, 626–632. [Google Scholar] [CrossRef]
- Su, W.P.; Schrieffer, J.R.; Heeger, A.J. Solitons in polyacetylene. Phys. Rev. Lett. 1979, 42, 1698–1701. [Google Scholar] [CrossRef]
- Jaynes, E.; Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89–109. [Google Scholar] [CrossRef]
- Cai, H.; Wang, D.W. Topological phases of quantized light. Natl. Sci. Rev. 2021, 8, nwaa196. [Google Scholar] [CrossRef]
- Shen, Y.X.; Zeng, L.S.; Geng, Z.G.; Zhao, D.G.; Peng, Y.G.; Zhu, X.F. Acoustic adiabatic propagation based on topological pumping in a coupled multicavity chain lattice. Phys. Rev. Appl. 2020, 14, 014043. [Google Scholar] [CrossRef]
- Tian, T.; Zhang, Y.; Zhang, L.; Wu, L.; Lin, S.; Zhou, J.; Duan, C.K.; Jiang, J.H.; Du, J. Experimental realization of nonreciprocal adiabatic transfer of phonons in a dynamically modulated nanomechanical topological insulator. Phys. Rev. Lett. 2022, 129, 215901. [Google Scholar] [CrossRef]
- Rice, M.J.; Mele, E.J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 1982, 49, 1455–1459. [Google Scholar] [CrossRef]
- Asbóth, J.K.; Oroszlány, L.; Pályi, A. A Short Course on Topological Insulators; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- McKay, D.C.; Wood, C.J.; Sheldon, S.; Chow, J.M.; Gambetta, J.M. Efficient Z gates for quantum computing. Phys. Rev. A 2017, 96, 022330. [Google Scholar] [CrossRef]
- Vezvaee, A.; Tripathi, V.; Kowsari, D.; Levenson-Falk, E.; Lidar, D.A. Virtual-Z gates and symmetric gate compilation. PRX Quantum 2025, 6, 020348. [Google Scholar] [CrossRef]
Model | Modulation Form | Number of Sites | Accumulated Phase |
---|---|---|---|
normal SSH [Figure 2] | adiabatic, cosine [20] | even | |
edge-defect SSH [Figure 3] | adiabatic, cosine [21] | odd | |
adiabatic, exponential [24] | |||
interface SSH [Figure 4, Figure 5 and Figure 7] | adiabatic, square-root [25] | odd | |
non-adiabatic, square-root [27] | |||
adiabatic, Gaussian [23] | |||
Rice-Mele [Figure 6] | adiabatic [22] | even | Random |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, T.; Yan, Y.; Wang, S. Universal Phase Correction for Quantum State Transfer in One-Dimensional Topological Spin Chains. Photonics 2025, 12, 1022. https://doi.org/10.3390/photonics12101022
Tian T, Yan Y, Wang S. Universal Phase Correction for Quantum State Transfer in One-Dimensional Topological Spin Chains. Photonics. 2025; 12(10):1022. https://doi.org/10.3390/photonics12101022
Chicago/Turabian StyleTian, Tian, Yingnan Yan, and Shizhen Wang. 2025. "Universal Phase Correction for Quantum State Transfer in One-Dimensional Topological Spin Chains" Photonics 12, no. 10: 1022. https://doi.org/10.3390/photonics12101022
APA StyleTian, T., Yan, Y., & Wang, S. (2025). Universal Phase Correction for Quantum State Transfer in One-Dimensional Topological Spin Chains. Photonics, 12(10), 1022. https://doi.org/10.3390/photonics12101022