Generation of UV Ellipsoidal Pulses by 3D Amplitude Shaping for Application in High-Brightness Photoinjectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser System and Pulse Stretching
2.2. Three-Dimensional Shaping with Two Sequential Polarization-Maintaining Amplitude-Shaping Units
2.3. UV Conversion
2.4. Diagnostics
3. Results
3.1. Characterization of Unshaped Pulses
3.2. UV Conversion Efficiency and Pulse Shape Preservation
3.3. Characterization of Ellipsoidal Pulses at 257 nm
4. Discussion
4.1. Total Efficiency for 3D Shaped UV Pulses
4.2. Quality of UV Ellipsoidal Pulses
4.3. Simplification for Alkali Antimonide Photocathodes
4.4. Towards Minimized Emittance from Photoinjectors for X-ray Free-Electron Lasers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASTRA | A Space Charge Tracking Algorithm |
BBO | Beta barium borate |
BSA | Beam-shaping aperture |
DESY | Deutsches Elektronen-Synchrotron |
FEL | Free-electron laser |
LCOS SLM | Liquid crystal on silicon spatial light modulator |
PITZ | Photo Injector Test Facility at DESY in Zeuthen |
RF | Radio frequency |
RMS | Root mean square |
UV | Ultraviolet |
Yb:KGW | Ytterbium-doped potassium gadolinium tungstate |
References
- Krasilnikov, M.; Stephan, F.; Asova, G.; Grabosch, H.J.; Groß, M.; Hakobyan, L.; Isaev, I.; Ivanisenko, Y.; Jachmann, L.; Khojoyan, M.; et al. Experimentally minimized beam emittance from an L-band photoinjector. Phys. Rev. ST Accel. Beams 2012, 15, 100701. [Google Scholar] [CrossRef]
- Will, I. Generation of flat-top picosecond pulses by means of a two-stage birefringent filter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 594, 119–125. [Google Scholar] [CrossRef]
- Liu, F.; Huang, S.; Si, S.; Zhao, G.; Liu, K.; Zhang, S. Generation of picosecond pulses with variable temporal profiles and linear polarization by coherent pulse stacking in a birefringent crystal shaper. Opt. Express 2019, 27, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Serafini, L.; Rosenzweig, J.B. Envelope analysis of intense relativistic quasilaminar beams in RF photoinjectors: A theory of emittance compensation. Phys. Rev. E 1997, 55, 7565–7590. [Google Scholar] [CrossRef]
- Limborg-Deprey, C.; Tomizawa, H. Maximizing brightness in photoinjectors. Int. J. Mod. Phys. 2007, 22, 3864–3881. [Google Scholar] [CrossRef]
- Sannibale, F. High-brightness electron injectors for high-duty cycle X-ray free electron lasers. Front. Phys. 2023, 11, 1187346. [Google Scholar] [CrossRef]
- Flöttmann, K. ASTRA—A Space Charge Tracking Algorithm. Available online: http://www.desy.de/mpyflo (accessed on 13 June 2024).
- Khojoyan, M.; Krasilnikov, M.; Stephan, F. 3D Ellipsoidal Beams for Ultimate Performance at the High Brightness Photoinjector PITZ; PITZ Internal Report; PITZ: Zeuthen, Germany, 2014. [Google Scholar]
- Khojoyan, M.; Krasilnikov, M.; Stephan, F.; Vashchenko, G. Beam dynamics optimization for the high brightness PITZ photo injector using 3D ellipsoidal cathode laser pulses. In Proceedings of the 35th International Free-Electron Laser Conference, FEL’13, New York, NY, USA, 26–30 August 2013; JACoW Publishing: Geneva, Switzerland, 2013; pp. 298–302. Available online: https://accelconf.web.cern.ch/FEL2013/papers/tupso36.pdf (accessed on 12 July 2024).
- Kapchinskij, I.M.; Vladimirskij, V.V. Limitations Of Proton Beam Current In A Strong Focusing Linear Accelerator Associated with The Beam Space Charge. In Proceedings of the 2nd International Conference on High-Energy Accelerators, Geneva, Switzerland, 14–19 September 1959; pp. 274–287. [Google Scholar]
- Reiser, M. Theory and Design of Charged Particle Beams; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Ha, G.; Kim, K.J.; Power, J.G.; Sun, Y.; Piot, P. Bunch shaping in electron linear accelerators. Rev. Mod. Phys. 2022, 94, 25006. [Google Scholar] [CrossRef]
- Serafini, L. Improving the beam quality of RF guns by correction of RF and space-charge effects. AIP Conf. Proc. 1992, 279, 645–674. [Google Scholar] [CrossRef]
- Luiten, O.J.; van der Geer, S.B.; de Loos, M.J.; Kiewiet, F.B.; van der Wiel, M.J. How to Realize Uniform Three-Dimensional Ellipsoidal Electron Bunches. Phys. Rev. Lett. 2004, 93, 094802. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lewellen, J.W. Generating a Quasiellipsoidal Electron Beam by 3D Laser-Pulse Shaping. Phys. Rev. Lett. 2008, 100, 74801. [Google Scholar] [CrossRef]
- Musumeci, P.; Moody, J.T.; England, R.J.; Rosenzweig, J.B.; Tran, T. Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron-Beam Distributions. Phys. Rev. Lett. 2008, 100, 244801. [Google Scholar] [CrossRef] [PubMed]
- Piot, P.; Sun, Y.E.; Maxwell, T.J.; Ruan, J.; Secchi, E.; Thangaraj, J.C.T. Formation and acceleration of uniformly filled ellipsoidal electron bunches obtained via space-charge-driven expansion from a cesium-telluride photocathode. Phys. Rev. ST Accel. Beams 2013, 16, 010102. [Google Scholar] [CrossRef]
- Xu, T.; Doran, D.S.; Liu, W.; Piot, P.; Power, J.G.; Whiteford, C.; Wisniewski, E. Demonstration of eigen-to-projected emittance mapping for an ellipsoidal electron bunch. Phys. Rev. Accel. Beams 2022, 25, 44001. [Google Scholar] [CrossRef]
- Faillace, L.; Agustsson, R.; Behtouei, M.; Bosco, F.; Bruhwiler, D.; Camacho, O.; Carillo, M.; Fukasawa, A.; Gadjev, I.; Giribono, A.; et al. High field hybrid photoinjector electron source for advanced light source applications. Phys. Rev. Accel. Beams 2022, 25, 63401. [Google Scholar] [CrossRef]
- Van Oudheusden, T.; de Jong, E.F.; van der Geer, S.B.; Op’t Root, W.P.E.M.; Luiten, O.J.; Siwick, B.J. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J. Appl. Phys. 2007, 102, 093501. [Google Scholar] [CrossRef]
- Filippetto, D.; Musumeci, P.; Li, R.K.; Siwick, B.J.; Otto, M.R.; Centurion, M.; Nunes, J.P.F. Ultrafast electron diffraction: Visualizing dynamic states of matter. Rev. Mod. Phys. 2022, 94, 045004. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Cook, A.; England, R.; Dunning, M.; Anderson, S.; Ferrario, M. Emittance compensation with dynamically optimized photoelectron beam profiles. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 557, 87–93. [Google Scholar] [CrossRef]
- Will, I.; Templin, H.I.; Schreiber, S.; Sandner, W. Photoinjector drive laser of the FLASH FEL. Opt. Express 2011, 19, 23770–23781. [Google Scholar] [CrossRef]
- Winkelmann, L.; Choudhuri, A.; Grosse-Wortmann, U.; Hartl, I.; Li, C.; Mohr, C.; Müller, J.; Peters, F.; Pfeiffer, S.; Salman, S. The European XFEL Photocathode Laser. In Proceedings of the 39th in Free Electron Laser Conference, FEL’19, Hamburg, Germany, 26–30 August 2019; JACoW Publishing: Geneva, Switzerland, 2019; pp. 423–426. [Google Scholar] [CrossRef]
- Gilevich, S.; Alverson, S.; Carbajo, S.; Droste, S.; Edstrom, S.; Fry, A.; Greenberg, M.; Lemons, R.; Miahnahri, A.; Polzin, W.; et al. The LCLS-II Photo-Injector Drive Laser System. In Proceedings of the Conference on Lasers and Electro-Optics, Virtual, 11–14 May 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. SW3E.3. [Google Scholar] [CrossRef]
- Li, C.; Akcaalan, O.; Frede, M.; Grosse-Wortmann, U.; Hartl, I.; Mohr, C.; Puncken, O.; Seidel, M.; Tuennermann, H.; Vidoli, C.; et al. Photocathode Laser Development for Superconducting X-ray Free Electron Lasers at DESY. In Proceedings of the 12th in International Particle Accelerator Conference, IPAC’21, Virtual, 24–28 May 2021; JACoW Publishing: Geneva, Switzerland, 2021; pp. 3599–3601. [Google Scholar] [CrossRef]
- Mironov, S.Y.; Potemkin, A.K.; Gacheva, E.I.; Andrianov, A.V.; Zelenogorskii, V.V.; Krasilnikov, M.; Stephan, F.; Khazanov, E.A. Shaping of cylindrical and 3D ellipsoidal beams for electron photoinjector laser drivers. Appl. Opt. 2016, 55, 1630–1635. [Google Scholar] [CrossRef]
- Koschitzki, C.; Qian, H.; Aboulbanine, Z.; Adhikari, G.; Aftab, N.; Boonpornprasert, P.; Georgiev, G.; Good, J.; Gross, M.; Hoffmann, A.; et al. Chirped Pulse Laser Shaping for High Brightness Photoinjectors. In Proceedings of the 40th International Free Electron Laser Conference, FEL2022, Trieste, Italy, 22–26 August 2022; JACoW Publishing: Geneva, Switzerland, 2022; pp. 345–348. [Google Scholar] [CrossRef]
- Mironov, S.Y.; Poteomkin, A.K.; Gacheva, E.I.; Andrianov, A.V.; Zelenogorskii, V.V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E.A. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating. Laser Phys. Lett. 2016, 13, 055003. [Google Scholar] [CrossRef]
- Gacheva, E.I.; Martyanov, M.A.; Poteomkin, A.K.; Kuzmin, I.V.; Mironov, S.Y. Shaping ellipsoidal laser pulses in the scheme with black analog masks for photoinjector applications. Laser Phys. Lett. 2023, 20, 125002. [Google Scholar] [CrossRef]
- Kuzmin, I.V.; Mironov, S.Y.; Martyanov, M.A.; Potemkin, A.K.; Khazanov, E.A. Highly efficient fourth harmonic generation of broadband laser pulses retaining 3D pulse shape. Appl. Opt. 2021, 60, 3128–3135. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Good, J.; Gross, M.; Krasilnikov, M.; Stephan, F. Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ. Photonics 2024, 11, 6. [Google Scholar] [CrossRef]
- Galdi, A.; Balajka, J.; DeBenedetti, W.J.I.; Cultrera, L.; Bazarov, I.V.; Hines, M.; Maxson, J.M. Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates. Appl. Phys. Lett. 2021, 118, 244101. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Krasilnikov, M.; Oppelt, A.; Stephan, F.; Sertore, D.; Monaco, L.; Pagani, C.; Hillert, W. Development and Characterization of Multi-Alkali Antimonide Photocathodes for High-Brightness RF Photoinjectors. Micromachines 2023, 14, 1182. [Google Scholar] [CrossRef]
- Brinkmann, R.; Schneidmiller, E.; Sekutowicz, J.; Yurkov, M. Prospects for CW and LP operation of the European XFEL in hard X-ray regime. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2014, 768, 20–25. [Google Scholar] [CrossRef]
- Sekutowicz, J.; Ayvazyan, V.; Barlak, M.; Branlard, J.; Cichalewski, W.; Grabowski, W.; Kostin, D.; Lorkiewicz, J.; Merz, W.; Nietubyc, R.; et al. Research and development towards duty factor upgrade of the European X-ray Free Electron Laser linac. Phys. Rev. ST Accel. Beams 2015, 18, 50701. [Google Scholar] [CrossRef]
- Zhang, H.; Gilevich, S.; Miahnahri, A.; Alverson, S.; Brachmann, A.; Duris, J.; Franz, P.; Fry, A.; Hirschman, J.; Larsen, K.; et al. The LCLS-II Photoinjector Laser Infrastructure. arXiv 2023, arXiv:2307.12030. [Google Scholar] [CrossRef]
- Przygoda, K.; Rybaniec, R.; Butkowski, L.; Gerth, C.; Peier, P.; Schmidt, C.; Steffen, B.; Schlarb, H. MicroTCA.4-Based RF and Laser Cavities Regulation Including Piezocontrols. IEEE Trans. Nucl. Sci. 2017, 64, 1389–1394. [Google Scholar] [CrossRef]
- Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M. Tailored laser beam shaping for efficient and accurate microstructuring. Appl. Phys. A 2018, 124, 111. [Google Scholar] [CrossRef]
- Wefers, M.M.; Nelson, K.A. Generation of high-fidelity programmable ultrafast optical waveforms. Opt. Lett. 1995, 20, 1047–1049. [Google Scholar] [CrossRef] [PubMed]
- Frumker, E.; Silberberg, Y. Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators. J. Opt. Soc. Am. B 2007, 24, 2940–2947. [Google Scholar] [CrossRef]
- Weiner, A.M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 2000, 71, 1929–1960. [Google Scholar] [CrossRef]
- Dansette, P.-M.; Burokas, R.; Veselis, L.; Zaukevičius, A.; Michailovas, A.; Rusteika, N. Peculiarities of second harmonic generation with chirped femtosecond pulses at high conversion efficiency. Opt. Commun. 2020, 445, 124462. [Google Scholar] [CrossRef]
- Wang, H.; Weiner, A. Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion. IEEE J. Quantum Electron. 2003, 39, 1600–1618. [Google Scholar] [CrossRef]
- Wang, T.; Xu, H.; Liu, Z.; Zhang, X.; Liu, J.; Xu, J.; Feng, L.; Li, J.; Liu, K.; Huang, S. Advanced drive laser system for a high-brightness continuous-wave photocathode electron gun. Opt. Express 2024, 32, 9699–9709. [Google Scholar] [CrossRef]
- Osvay, K.; Ross, I. Broadband sum-frequency generation by chirp-assisted group-velocity matching. J. Opt. Soc. Am. B 1996, 13, 1431–1438. [Google Scholar] [CrossRef]
- Willenberg, B.; Brunner, F.; Phillips, C.; Keller, U. High-power picosecond deep-UV source via group velocity matched frequency conversion. Optica 2020, 7, 485–491. [Google Scholar] [CrossRef]
- Kuzmin, I.; Mironov, S.; Gacheva, E.; Poteomkin, A.; Khazanov, E. Retaining 3D shape of picosecond laser pulses during optical harmonics generation. Appl. Opt. 2019, 58, 2678–2686. [Google Scholar] [CrossRef]
- Loisch, G.; Chen, Y.; Koschitzki, C.; Qian, H.; Gross, M.; Hannah, A.; Hoffmann, A.; Kalantaryan, D.; Krasilnikov, M.; Lederer, S.; et al. Direct measurement of photocathode time response in a high-brightness photoinjector. Appl. Phys. Lett. 2022, 120, 104102. [Google Scholar] [CrossRef]
Pulse Shape | Gaussian | Flat Top | Ellipsoid |
---|---|---|---|
Projected emittance [mm · mrad] | 0.657 | 0.330 | 0.216 |
Brightness [A/mm] | 71 | 233 | 612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, A.; Good, J.; Gross, M.; Krasilnikov, M.; Stephan, F. Generation of UV Ellipsoidal Pulses by 3D Amplitude Shaping for Application in High-Brightness Photoinjectors. Photonics 2024, 11, 779. https://doi.org/10.3390/photonics11080779
Hoffmann A, Good J, Gross M, Krasilnikov M, Stephan F. Generation of UV Ellipsoidal Pulses by 3D Amplitude Shaping for Application in High-Brightness Photoinjectors. Photonics. 2024; 11(8):779. https://doi.org/10.3390/photonics11080779
Chicago/Turabian StyleHoffmann, Andreas, James Good, Matthias Gross, Mikhail Krasilnikov, and Frank Stephan. 2024. "Generation of UV Ellipsoidal Pulses by 3D Amplitude Shaping for Application in High-Brightness Photoinjectors" Photonics 11, no. 8: 779. https://doi.org/10.3390/photonics11080779
APA StyleHoffmann, A., Good, J., Gross, M., Krasilnikov, M., & Stephan, F. (2024). Generation of UV Ellipsoidal Pulses by 3D Amplitude Shaping for Application in High-Brightness Photoinjectors. Photonics, 11(8), 779. https://doi.org/10.3390/photonics11080779