Review of High-Power Continuous Wave Yb-Doped Fiber Lasers near 980 nm
Abstract
:1. Introduction
2. The Challenge of High-Power Yb-Doped Fiber Lasers near 980 nm
3. Double-Cladding Yb-Doped Fiber Lasers near 980 nm
3.1. Power Up-Scaling with Optimization of Beam Quality
3.2. High-Power, High-Efficiency Fiber Lasers near 980 nm with Large-Core DCYF
3.3. Micro-Structured Yb-Doped Fiber Lasers near 980 nm
3.4. Issue of in-Band ASE near 980 nm
4. Summary and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Snitzer, E. Proposed Fiber Cavities for Optical Masers. J. Appl. Phys. 1961, 32, 36–39. [Google Scholar] [CrossRef]
- Koester, C.J.; Snitzer, E. Amplification in a Fiber Laser. Appl. Opt. 1964, 3, 1182–1186. [Google Scholar] [CrossRef]
- Kurkov, A.S. Oscillation spectral range of Yb-doped fiber lasers. Laser Phys. Lett. 2007, 4, 93–102. [Google Scholar] [CrossRef]
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Tünnermann, A.; Schreiber, T.; Limpert, J. Fiber lasers and amplifiers: An ultrafast performance evolution. Appl. Opt. 2010, 49, F71–F78. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Payne, D.N. High-Power Fiber Lasers. Science 2011, 332, 921–922. [Google Scholar] [CrossRef]
- Jauregui, C.; Limpert, J.; Tuennermann, A. High-power fibre lasers. Nat. Photon. 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Zervas, M.N.; Codemard, C.A. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Mears, R.J.; Reekie, L.; Poole, S.B.; Payne, D.N. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm. Electron. Lett. 1986, 22, 159–160. [Google Scholar] [CrossRef]
- Bing, F.; Xuefang, Z.; Zengyang, L.; Yu, Z.; Tianshu, W. Experimental research on an L-band multi-wavelength erbium-doped fiber laser based on a cascaded Sagnac loop and M–Z filters. Laser Phys. 2019, 29, 065102. [Google Scholar] [CrossRef]
- Hanna, D.C.; Percival, R.M.; Perry, I.R.; Smart, R.G.; Suni, P.J.; Tropper, A.C. An ytterbium-doped monomode fibre laser: Broadly tunable operation from 1.010 µm to 1.162 µm and three-level operation at 974 nm. J. Mod. Opt. 1990, 37, 517–525. [Google Scholar] [CrossRef]
- Yang, B.; Shi, C.; Zhang, H.; Ye, Q.; Pi, H.; Tao, R.; Wang, X.; Ma, P.; Leng, J.; Chen, Z.; et al. Monolithic fiber laser oscillator with record high power. Laser Phys. Lett. 2018, 15, 075106. [Google Scholar] [CrossRef]
- Mears, R.J.; Reekie, L.; Poole, S.B.; Payne, D.N. Neodymium-doped silica single-mode fibre lasers. Electron. Lett. 1985, 21, 738–740. [Google Scholar] [CrossRef]
- Florentin, R.; Corre, K.L.; Robin, T.; Barnini, A.; Prakash, R.; Santarelli, G.; Gilles, H.; Girard, S.; Laroche, M. Optimization of Nd-Doped LMA Fibers for High-Power Laser Emission Near 915 nm. IEEE Photon. J. 2024, 16, 1500706. [Google Scholar] [CrossRef]
- Sincore, A.; Bradford, J.D.; Cook, J.; Shah, L.; Richardson, M.C. High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 0901808. [Google Scholar] [CrossRef]
- Zhong, C.; Zou, J.; Wang, H.; Chen, T.; Ruan, Q.; Lan, L.; Dong, Z.; Luo, Z. 816 nm All-Fiber Mode-Locked Tm-Doped Laser in Noise-Like Pulse Regime. IEEE Photon. Technol. Lett. 2024, 36, 195–198. [Google Scholar] [CrossRef]
- Hemming, A.; Simakov, N.; Haub, J.; Carter, A. A review of recent progress in holmium-doped silica fibre sources. Opt. Fiber Technol. 2014, 20, 621–630. [Google Scholar] [CrossRef]
- Hu, P.; Mao, J.; Zhou, X.; Feng, T.; Nie, H.; Zhang, B.; Li, T.; He, J.; Yang, K. 603 MHz harmonic mode-locked femtosecond Ho-doped fiber laser. J. Light. Technol. 2024, 1–7. [Google Scholar] [CrossRef]
- Dawson, J.W.; Messerly, M.J.; Beach, R.J.; Shverdin, M.Y.; Stappaerts, E.A.; Sridharan, A.K.; Pax, P.H.; Heebner, J.E.; Siders, C.W.; Barty, C.P.J. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express 2008, 16, 13240–13266. [Google Scholar] [CrossRef]
- Cao, J.; Guo, S.; Xu, X.; Chen, J.; Lu, Q. Investigation on Power Scalability of Diffraction-Limited Yb-Doped Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 373–383. [Google Scholar] [CrossRef]
- Dong, L.; Ballato, J.; Kolis, J. Power scaling limits of diffraction-limited fiber amplifiers considering transverse mode instability. Opt. Express 2023, 31, 6690–6703. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Chen, M.; Huang, Z.; Wang, Z.; Chen, J. Requirements on double-cladding Yb-doped fiber for power scaling of diffraction-limited fiber amplifiers. Opt. Express 2024, 32, 12892–12910. [Google Scholar] [CrossRef] [PubMed]
- Machinet, G.; Andriukaitis, G.; Sévillano, P.; Lhermite, J.; Descamps, D.; Pugžlys, A.; Baltuška, A.; Cormier, E. High-gain amplification in Yb:CaF2 crystals pumped by a high-brightness Yb-doped 976 nm fiber laser. Appl. Phys. B 2013, 111, 495–500. [Google Scholar] [CrossRef]
- Sévillano, P.; Georges, P.; Druon, F.; Descamps, D.; Cormier, E. 32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser. Opt. Lett. 2014, 39, 6001–6004. [Google Scholar] [CrossRef] [PubMed]
- Soh, D.B.S.; Codemard, C.; Wang, S.; Nilsson, J.; Sahu, J.K.; Laurell, F.; Philippov, V.; Jeong, Y.; Alegria, C.; Baek, S. A 980-nm YB-doped fiber MOPA source and its frequency doubling. IEEE Photon. Technol. Lett. 2005, 16, 1032–1034. [Google Scholar] [CrossRef]
- Zou, S.; Li, P.; Wang, L.; Chen, M.; Li, G. 980 nm Yb-doped single-mode fiber laser and its frequency-doubling with BIBO. Appl. Phys. B 2009, 95, 685–690. [Google Scholar] [CrossRef]
- Laroche, M.; Bartolacci, C.; Cadier, B.; Gilles, H.; Girard, S.; Lablonde, L.; Robin, T. Generation of 520 mW pulsed blue light by frequency doubling of an all-fiberized 978 nm Yb-doped fiber laser source. Opt. Lett. 2011, 36, 3909–3911. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhong, G.; Liu, Z.; Chi, J.; Zhang, X.; Yang, C.; Zhao, Z.; Li, Y.; Wang, X.; Zhao, H.; et al. 980 nm Yb-doped double-clad photonic crystal fiber amplifier and its frequency doubling. Opt. Laser Technol. 2012, 44, 2202–2205. [Google Scholar] [CrossRef]
- Nilsson, J.; Minelly, J.D.; Paschotta, R.; Tropper, A.C.; Hanna, D.C. Ring-doped cladding-pumped single-mode three-level fiber laser. Opt. Lett. 1998, 23, 355–357. [Google Scholar] [CrossRef]
- Hanna, D.C.; Percival, R.M.; Perry, I.R.; Smart, R.G.; Suni, P.J.; Tropper, A.C. Continuous-Wave Tunable and Superfluorescent Operation of a Monomode Ytterbium-Doped Fiber Laser. In Proceedings of the Advanced Solid State Lasers, Cape Cod, MA, USA, 1 May 1989. [Google Scholar]
- Zenteno, L.A.; Minelly, J.D.; Dejneka, M.; Crigler, S. 0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG. In Proceedings of the Advanced Solid State Lasers 2000, Davos, Switzerland, 13 February 2000. [Google Scholar]
- Bartolacci, C.; Laroche, M.; Gilles, H.; Girard, S.; Robin, T.; Cadier, B. All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm. In Proceedings of the Advances in Optical Materials, Istanbul, Turkey, 13 February 2011. [Google Scholar]
- Bouchier, A.; Lucas-Leclin, G.; Georges, P. Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide. Opt. Express 2005, 13, 6974–6979. [Google Scholar] [CrossRef] [PubMed]
- Zenteno, L.A.; Minelly, J.D.; Liu, A.; Ellison, A.J.G.; Crigler, S.G.; Walton, D.T.; Kuksenkov, D.V.; Dejneka, M.J. 1 W single-transverse-mode Yb-doped double-clad fibre laser at 978 nm. Electron. Lett. 2001, 37, 819–820. [Google Scholar] [CrossRef]
- Kurkov, A.S.; Medvedkov, O.I.; Paramonov, V.M.; Vasiliev, S.A.; Dianov, E.M.; Solodovnikov, V.; Zhilin, V.; Guryanov, A.N.; Laptev, A.Y.; Umnikov, A.A. High-power Yb-doped double-clad fiber lasers for a range of 0.98–1.04 µm. In Proceedings of the Optical Amplifiers and Their Applications, Stresa Italy, 1 July 2001. [Google Scholar]
- Selvas, R.; Sahu, J.K.; Fu, L.B.; Jang, J.N.; Nilsson, J.; Grudinin, A.B.; Ylä-Jarkko, K.H.; Alam, S.A.; Turner, P.W.; Moore, J. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm. Opt. Lett. 2003, 28, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Soh, D.B.S.; Codemard, C.; Sahu, J.K.; Nilsson, J.; Philippov, V.; Alegria, C.; Jeong, Y. A 4.3 W 977 nm Ytterbium-doped Jacketed-Air-Clad Fiber Amplifier. In Proceedings of the Advanced Solid-State Photonics, Santa Fe, Mexico, 1 February 2004. [Google Scholar]
- Leich, M.; Jäger, M.; Grimm, S.; Hoh, D.; Jetschke, S.; Becker, M.; Hartung, A.; Bartelt, H. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power. Laser Phys. Lett. 2014, 11, 045102. [Google Scholar] [CrossRef]
- Aleshkina, S.S.; Levchenko, A.E.; Medvedkov, O.I.; Bobkov, K.K.; Bubnov, M.M.; Lipatov, D.S.; Guryanov, A.N.; Likhachev, M.E. Photodarkening-Free Yb-Doped Saddle-Shaped Fiber for High Power Single-Mode 976-nm Laser. IEEE Photon. Technol. Lett. 2018, 30, 127–130. [Google Scholar] [CrossRef]
- Kotov, L.; Temyanko, V.; Aleshkina, S.; Bubnov, M.; Lipatov, D.; Likhachev, M. Efficient single-mode 976 nm amplifier based on a 45 micron outer diameter Yb-doped fiber. Opt. Lett. 2020, 45, 4292–4295. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.Y.; Song, Y.C.; Lee, Z.C.; Lin, S.T.; Tang, Y.C. Realization of a compact 10-W 976-nm ytterbium-doped all-fiber laser. Opt. Lett. 2023, 48, 5667–5670. [Google Scholar] [CrossRef] [PubMed]
- Aleshkina, S.S.; Likhachev, M.E.; Lipatov, D.S.; Medvedkov, O.I.; Bobkov, K.K.; Bubnov, M.M.; Guryanov, A.N. 5.5 W monolithic single-mode fiber laser and amplifier operating near 976 nm. In Proceedings of the Conference on Fiber Lasers XIII: Technology, Systems, and Applications, San Francisco, CA, USA, 15–18 February 2016. [Google Scholar]
- Valero, N.; Feral, C.; Lhermite, J.; Petit, S.; Royon, R.; Bardin, Y.V.; Goeppner, M.; Dixneuf, C.; Guiraud, G.; Proulx, A.; et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm. Opt. Lett. 2020, 45, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, Z.; Cao, J.; Liu, A.; Huang, Z.; Chen, J. Study on tens-of-Watt all-fiber oscillator operating near 980 nm with commercially-available double-cladding ytterbium-doped fiber. Optik 2021, 228, 166131. [Google Scholar] [CrossRef]
- Chen, M.; Liu, A.; Cao, J.; Huang, Z.; Chen, J. Demonstration of 50-W-level all-fiber oscillator operating near 980 nm with the 20-μm core-diameter double-cladding Yb-doped fiber. Opt. Fiber Technol. 2021, 65, 102609. [Google Scholar] [CrossRef]
- Li, Z.; Chen, M.; Liu, A.; Tian, Y.; Huang, Z.; Cao, J.; Chen, J. Experimental investigation on a hundred-Watt monolithic fiber laser operating near 980 nm with 20/125-μm double-cladding Yb-doped fiber. Opt. Fiber Technol. 2022, 72, 103004. [Google Scholar] [CrossRef]
- Aleshkina, S.S.; Bardina, T.L.; Lipatov, D.S.; Bobkov, K.K.; Bubnov, M.M.; Gur’yanov, A.N.; Likhachev, M.E. Factors reducing the efficiency of ytterbium fibre lasers and amplifiers operating near 0.98 μm. Quantum Electron. 2017, 47, 1109–1114. [Google Scholar] [CrossRef]
- Kim, J.P.; Park, J.S.; Oh, Y.J.; Han, E.H.; Kim, J.W.; Park, E.J.; Jeong, H.; Jung, Y.; Lee, K.; Lee, Y.; et al. High-power extra-large-mode-area Yb-doped fiber laser and amplifier at 978 nm. J. Korean Phys. Soc. 2021, 78, 1062–1066. [Google Scholar] [CrossRef]
- Chen, M.; Du, H.; Cao, J.; Liu, A.; Pan, Z.; Huang, Z.; Chen, J. Experimental study of a 100-W all-fibre amplifier operating near 980 nm. Quantum Electron. 2021, 51, 976–982. [Google Scholar] [CrossRef]
- Chen, M.; Cao, J.; Liu, A.; Huang, Z.; Pan, Z.; Chen, Z.; Chen, J. Experimental study on the 500-W-level all-fiber amplifier operating near 980 nm. Results Phys. 2021, 29, 104784. [Google Scholar] [CrossRef]
- Chen, M.N.; Cao, J.Q.; Liu, A.M.; Huang, Z.H.; Pan, Z.Y.; Chen, Z.L.; Chen, J.B. Demonstration of kilowatt monolithic Yb-doped fiber laser operation near 980 nm. Opt. Lett. 2021, 46, 5340–5343. [Google Scholar] [CrossRef] [PubMed]
- Boullet, J.; Zaouter, Y.; Desmarchelier, R.; Cazaux, M.; Salin, F.; Saby, J.; Bello-Doua, R.; Cormier, E. High power ytterbium-doped rod-type three-level photonic crystal fiber laser. Opt. Express 2008, 16, 17891–17902. [Google Scholar] [CrossRef] [PubMed]
- Röser, F.; Jauregui, C.; Limpert, J.; Tünnermann, A. 94 W 980 nm high brightness Yb-doped fiber laser. Opt. Express 2008, 16, 17310–17318. [Google Scholar] [CrossRef] [PubMed]
- Limpert, J.; Schmidt, O.; Rothhardt, J.; Röser, F.; Schreiber, T.; Tünnermann, A.; Ermeneux, S.; Yvernault, P.; Salin, F. Extended single-mode photonic crystal fiber lasers. Opt. Express 2006, 14, 2715–2720. [Google Scholar] [CrossRef]
- Goel, C.; Yoo, S. All-solid antiresonant fiber design for high-efficiency three-level lasing in ytterbium-doped fiber lasers. Opt. Lett. 2022, 47, 1045–1048. [Google Scholar] [CrossRef]
- Li, H.Z.; Zang, J.C.; Raghuraman, S.; Chen, S.X.; Goel, C.R.; Xia, N.; Ishaaya, A.; Yoo, S. Large-mode-area multicore Yb-doped fiber for an efficient high power 976 nm laser. Opt. Express 2021, 29, 21992–22000. [Google Scholar] [CrossRef]
- White, T.P.; McPhedran, R.C.; de Sterke, C.M.; Litchinitser, N.M.; Eggleton, B.J. Resonance and scattering in microstructured optical fibers. Opt. Lett. 2002, 27, 1977–1979. [Google Scholar] [CrossRef] [PubMed]
- Pureur, V.; Bigot, L.; Bouwmans, G.; Quiquempois, Y.; Douay, M.; Jaouen, Y. Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm. Appl. Phys. Lett. 2008, 92, 061113. [Google Scholar] [CrossRef]
- Gu, G.; Kong, F.; Hawkins, T.W.; Jones, M.; Dong, L. Extending mode areas of single-mode all-solid photonic bandgap fibers. Opt. Express 2015, 23, 9147–9156. [Google Scholar] [CrossRef] [PubMed]
- Li, W.S.; Matniyaz, T.; Gafsi, S.; Kalichevsky-Dong, M.T.; Hawkins, T.W.; Parsons, J.; Gu, G.C.; Dong, L. 151W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm. Opt. Express 2019, 27, 24972–24977. [Google Scholar] [CrossRef] [PubMed]
- Jelger, P.; Engholm, M.; Norin, L.; Laurell, F. Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber. J. Opt. Soc. Am. B 2010, 27, 338–342. [Google Scholar] [CrossRef]
- Yu, Y.; An, Y.; Cao, J.; Guo, S.; Xu, X. Experimental Study on All-Fiberized Continuous-Wave Yb-Doped Fiber Amplifier Operating Near 980 nm. IEEE Photon. Technol. Lett. 2016, 28, 398–401. [Google Scholar] [CrossRef]
- Yanshan, W.; Weiwei, K.; Yi, M.; Yinhong, S.; Yujun, F. Theoretical and experimental research on the ~980-nm Yb-doped fiber laser. Opt. Eng. 2016, 55, 076113. [Google Scholar] [CrossRef]
- Matniyaz, T.; Li, W.S.; Kalichevsky-Dong, M.; Hawkins, T.W.; Parsons, J.; Gu, G.C.; Dong, L. Highly efficient cladding-pumped single-mode three-level Yb all-solid photonic bandgap fiber lasers. Opt. Lett. 2019, 44, 807–810. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, S.; Liu, A.; Cao, J.; Huang, Z.; Chen, J. Experimental Study on the In-Band Amplified Spontaneous Emission in the Single-Mode Continuous-Wave Yb-Doped Fiber Amplifier Operating near 980 nm. Photonics 2022, 9, 377. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, S.; Liu, A.; Cao, J.; Huang, Z.; Chen, J. Demonstration of Yb-Doped Fiber Amplifier Operating near 980 nm with the Slope Efficiency Close to the Theoretical Limit. Photonics 2022, 9, 571. [Google Scholar] [CrossRef]
Fiber Types | Details | Output Power (W) | Slope Efficiency * | Beam Quality | Year |
---|---|---|---|---|---|
Reduced inner cladding | 11 µm core and 32 × 16 µm2 elliptical cladding [35]. | 1 | 48% | M2 < 1.2 | 2001 |
6~9 µm core and 25~50 µm inner cladding [36]. | 1.2 | 60% | Not mentioned | 2001 | |
Jacketed air-clad around 20 µm cladding [38]. | 4.3 | About 40% | M2 ≈ 1.14 | 2004 | |
Tapered fiber | Long-tapered Yb-doped fiber [39]. | 10.4 | 31% | Single mode | 2014 |
Saddle-shaped Yb-doped fiber [40]. | 10.6 | 18.4% | M2 ≈ 1.16 | 2018 | |
Tapered passive fiber for coupling into active fiber [41]. | 13 | 31% | M2 ≈ 1.1 | 2020 | |
Cladding-etched Yb-doped fiber [42]. | 10.3 | 25.4% | Not mentioned | 2023 | |
W-profile fiber | 28/80 × 80 µm Yb-doped fiber with 0.038 core NA [43]. | 5.5 | 25% | Single mode | 2016 |
35/125 µm Yb-doped fiber with 20 µm doped region [44]. | 39 | 19% | Not mentioned | 2020 | |
Commercially available fiber | 20/125 µm all-fiber oscillator [45]. | 15 | 13% | M2 ≈ 2 | 2021 |
20/125 µm all-fiber oscillator [46]. | 50.8 | 15.6% | M2 ≈ 2.5 | 2021 | |
20/125 µm MOPA configuration [47]. | 109 | 13% | M2 ≈ 1.9 | 2022 |
Core/Cladding Diameter of Yb-Doped Fiber | Output Power (W) | Slope Efficiency | Beam Quality | Year |
---|---|---|---|---|
95/125 μm [48] | 34 | 66% | Not mentioned | 2017 |
300/400 µm [49] | 38 1 77 2 | 84% 1, 3 75% 2, 3 | M2 ≈ 41 2 | 2021 |
60/125 μm [50] | 110 | 35% | Not mentioned | 2021 |
105/250 μm [51] | 556 | 50.5% | M2 ≈ 23.6 | 2021 |
105/250 μm [52] | 1110 | 65.3% | M2 ≈ 16.2 | 2021 |
Yb-Doped Fiber Types | Output Power (W) | Slope Efficiency | Beam Quality | Year |
---|---|---|---|---|
Rod-type PCF [53] | 94 | 50% | M2 ≈ 1.2 | 2008 |
Single-cladding solid-core PBGF [59] | 0.13 | 65% | Not mentioned | 2008 |
DC solid-core PBGF [61] | 151 | 63% | M2 ≈ 1.25 | 2019 |
Six-core fiber [57] | 25 | 46% 1 | Not mentioned | 2021 |
All-solid YbARF [56] | Not mentioned | 85% 2 | Not mentioned | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Cao, J.; Chen, M.; Wang, Z.; Si, L.; Chen, J. Review of High-Power Continuous Wave Yb-Doped Fiber Lasers near 980 nm. Photonics 2024, 11, 365. https://doi.org/10.3390/photonics11040365
Zhou S, Cao J, Chen M, Wang Z, Si L, Chen J. Review of High-Power Continuous Wave Yb-Doped Fiber Lasers near 980 nm. Photonics. 2024; 11(4):365. https://doi.org/10.3390/photonics11040365
Chicago/Turabian StyleZhou, Shangde, Jianqiu Cao, Maoni Chen, Zefeng Wang, Lei Si, and Jinbao Chen. 2024. "Review of High-Power Continuous Wave Yb-Doped Fiber Lasers near 980 nm" Photonics 11, no. 4: 365. https://doi.org/10.3390/photonics11040365
APA StyleZhou, S., Cao, J., Chen, M., Wang, Z., Si, L., & Chen, J. (2024). Review of High-Power Continuous Wave Yb-Doped Fiber Lasers near 980 nm. Photonics, 11(4), 365. https://doi.org/10.3390/photonics11040365