Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression
Abstract
1. Introduction
2. Theory
3. Experimental Setup
4. Experiment Result and Discussion
4.1. System Measurement Sensitivity
4.2. The Verdet Constant Measurement of Anti-Resonant Fiber
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, W.; Wang, Y.-Y.; Gao, S.-F.; Wang, M.-L.; Wang, P. Recent progress in low-loss hollow-core anti-resonant fibers and their applications. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 4400312. [Google Scholar] [CrossRef]
- Ni, W.; Yang, C.; Luo, Y.; Xia, R.; Lu, P.; Hu, D.J.J.; Danto, S.; Shum, P.P.; Wei, L. Recent Advancement of Anti-Resonant Hollow-Core Fibers for Sensing Applications. Photonics 2021, 8, 128. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.; Sheng, Y.; Deng, H.; Gao, S.; Wang, Y.; Ding, W. Optical side leakage radiometry for distributed characterization of anti-resonant hollow-core fibers. In Proceedings of the 49th European Conference on Optical Communications (ECOC 2023), Glasgow, UK, 1–5 October 2023. [Google Scholar] [CrossRef]
- Mitu, S.A.; Ahmed, K.; Bui, F.M.; Nithya, P.; Al-Zahrani, F.A.; Mollah, M.A.; Rajan, M.M. Novel nested anti-resonant fiber based magnetic fluids sensor: Performance and bending effects inspection. J. Magn. Magn. Mater. 2021, 538, 168230. [Google Scholar] [CrossRef]
- Bradley, T.D.; Jasion, G.T.; Hayes, J.R.; Chen, Y.; Hooper, L.; Sakr, H.; Alonso, M.; Taranta, A.; Saljoghei, A.; Mulvad, H.C. Antiresonant hollow core fibre with 0.65 dB/km attenuation across the C and L telecommunication bands. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019. [Google Scholar] [CrossRef]
- Mulvad, H.C.H.; Mousavi, S.A.; Zuba, V.; Xu, L.; Sakr, H.; Bradley, T.D.; Hayes, J.R.; Jasion, G.T.; Fokoua, E.N.; Taranta, A.; et al. Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre. Nat. Photon. 2022, 16, 448–453. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Zhang, H.; Jiang, S.; Wang, Y.; Jin, W.; Ren, W. Dual-comb photothermal spectroscopy. Nat. Commun. 2022, 13, 2181. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, Y.; Bao, H.; Ho, H.L.; Jin, W.; Fan, S.; Gao, S.; Wang, Y.; Wang, P. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun. 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.A.; Taranta, A.A.; Narayanan, C.; Fokoua, E.M.; Mousavi, S.A.; Strandjord, L.K.; Smiciklas, M.; Bradley, T.D.; Hayes, J.; Jasion, G.T.; et al. Hollow-core resonator fiber optic gyroscope using nodeless anti-resonant fiber. Opt. Lett. 2021, 46, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xu, X.; Song, N.; Li, W.; Zhu, Y.; Liu, J.; Liang, T. Low-Loss Isolated Anti-Resonant Core Photonic Bandgap Fiber. Chin. J. Lasers. 2022, 49, 1906002. [Google Scholar]
- Böhm, K.; Petermann, K.; Weidel, E. Sensitivity of a fiber-optic gyroscope to environmental magnetic fields. Opt. Lett. 1982, 7, 180–182. [Google Scholar] [CrossRef]
- Hotate, K.; Tabe, K. Drift of an optical fiber gyroscope caused by the Faraday effect: Influence of the earth’s magnetic field. Appl. Opt. 1986, 25, 1086–1092. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Gao, F. Photonic Crystal Fiber Optic Gyroscope. Acta Opt. Sin. 2022, 42, 1706002. [Google Scholar]
- Smith, A.M. Polarization and magnetooptic properties of single-mode optical fiber. Appl. Opt. 1978, 17, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.L.; Andres, M.V.; Hernandez, M.A. Faraday effect in standard optical fibers: Dispersion of the effective Verdet constant. Appl. Opt. 1996, 35, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Chen, X.; Hao, P.; Xiao, H.; Ding, Z.; Liu, T.; Yao, X.S. Introduction and measurement of the effective Verdet constant of spun optical fibers. Opt. Express 2021, 29, 23315–23330. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, H.; Dong, W.; Pang, F.; Wen, J.; Chen, Z.; Wang, T. Fabrication of europium-doped silica optical fiber with high Verdet constant. Opt. Express 2016, 24, 18709–18717. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Terrel, M.A.; Kim, H.K.; Digonnet, M.J.; Fan, S. Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber. J. Light. Technol. 2009, 27, 3194–3201. [Google Scholar] [CrossRef]
- Miller, G.A.; Cranch, G.A. Reduction of intensity noise in hollow core optical fiber using angle-cleaved splices. IEEE Photonics Technol. Lett. 2015, 28, 414–417. [Google Scholar] [CrossRef]
- Zaidi, S.H.; Tatam, R.P. Faraday-effect magnetometry: Compensation for the temperature-dependent Verdet constant. Meas. Sci. Technol. 1994, 5, 1471–1479. [Google Scholar] [CrossRef]
- Huang, D.; Srinivasan, S.; Bowers, J.E. Compact Tb doped fiber optic current sensor with high sensitivity. Opt. Express. 2015, 23, 29993–29999. [Google Scholar] [CrossRef]
- Stolen, R.; Turner, E. Faraday rotation in highly birefringent optical fibers. Appl. Opt. 1980, 19, 842–845. [Google Scholar] [CrossRef]
- Ren, S.; Ding, H.; Li, M.; She, S. Magnetic shielding effectiveness for comparators. IEEE Trans. Instrum. Meas. 1995, 44, 422–424. [Google Scholar] [CrossRef]
- Phelps, G.; Abney, J.; Broering, M.; Korsch, W. A sensitive Faraday rotation setup using triple modulation. Rev. Sci. Instrum. 2015, 86, 073107. [Google Scholar] [CrossRef] [PubMed]
- Weber, M. Faraday rotator materials for laser systems. Laser Nonlinear Opt. Mater. 1987, 681, 75–90. [Google Scholar] [CrossRef]
- Kim, H.K.; Digonnet, M.J.; Kino, G.S. Air-core photonic-bandgap fiber-optic gyroscope. J. Light. Technol. 2006, 24, 3169. [Google Scholar]
- Sun, L.; Jiang, S.; Zuegel, J.; Marciante, J. Effective Verdet constant in a terbium-doped-core phosphate fiber. Opt. Lett. 2009, 34, 1699–1701. [Google Scholar] [CrossRef]
- Lefevre, H.C. The Fiber-Optic Gyroscope, 3rd ed.; Artech House: Norwood, MA, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Du, H.; Lin, Y.; Yu, Z. Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression. Photonics 2024, 11, 366. https://doi.org/10.3390/photonics11040366
Guo Z, Du H, Lin Y, Yu Z. Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression. Photonics. 2024; 11(4):366. https://doi.org/10.3390/photonics11040366
Chicago/Turabian StyleGuo, Zhiyong, Haoqi Du, Yuhao Lin, and Zhangjun Yu. 2024. "Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression" Photonics 11, no. 4: 366. https://doi.org/10.3390/photonics11040366
APA StyleGuo, Z., Du, H., Lin, Y., & Yu, Z. (2024). Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression. Photonics, 11(4), 366. https://doi.org/10.3390/photonics11040366