Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression
Abstract
:1. Introduction
2. Theory
3. Experimental Setup
4. Experiment Result and Discussion
4.1. System Measurement Sensitivity
4.2. The Verdet Constant Measurement of Anti-Resonant Fiber
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, W.; Wang, Y.-Y.; Gao, S.-F.; Wang, M.-L.; Wang, P. Recent progress in low-loss hollow-core anti-resonant fibers and their applications. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 4400312. [Google Scholar] [CrossRef]
- Ni, W.; Yang, C.; Luo, Y.; Xia, R.; Lu, P.; Hu, D.J.J.; Danto, S.; Shum, P.P.; Wei, L. Recent Advancement of Anti-Resonant Hollow-Core Fibers for Sensing Applications. Photonics 2021, 8, 128. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.; Sheng, Y.; Deng, H.; Gao, S.; Wang, Y.; Ding, W. Optical side leakage radiometry for distributed characterization of anti-resonant hollow-core fibers. In Proceedings of the 49th European Conference on Optical Communications (ECOC 2023), Glasgow, UK, 1–5 October 2023. [Google Scholar] [CrossRef]
- Mitu, S.A.; Ahmed, K.; Bui, F.M.; Nithya, P.; Al-Zahrani, F.A.; Mollah, M.A.; Rajan, M.M. Novel nested anti-resonant fiber based magnetic fluids sensor: Performance and bending effects inspection. J. Magn. Magn. Mater. 2021, 538, 168230. [Google Scholar] [CrossRef]
- Bradley, T.D.; Jasion, G.T.; Hayes, J.R.; Chen, Y.; Hooper, L.; Sakr, H.; Alonso, M.; Taranta, A.; Saljoghei, A.; Mulvad, H.C. Antiresonant hollow core fibre with 0.65 dB/km attenuation across the C and L telecommunication bands. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019. [Google Scholar] [CrossRef]
- Mulvad, H.C.H.; Mousavi, S.A.; Zuba, V.; Xu, L.; Sakr, H.; Bradley, T.D.; Hayes, J.R.; Jasion, G.T.; Fokoua, E.N.; Taranta, A.; et al. Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre. Nat. Photon. 2022, 16, 448–453. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Zhang, H.; Jiang, S.; Wang, Y.; Jin, W.; Ren, W. Dual-comb photothermal spectroscopy. Nat. Commun. 2022, 13, 2181. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, Y.; Bao, H.; Ho, H.L.; Jin, W.; Fan, S.; Gao, S.; Wang, Y.; Wang, P. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun. 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.A.; Taranta, A.A.; Narayanan, C.; Fokoua, E.M.; Mousavi, S.A.; Strandjord, L.K.; Smiciklas, M.; Bradley, T.D.; Hayes, J.; Jasion, G.T.; et al. Hollow-core resonator fiber optic gyroscope using nodeless anti-resonant fiber. Opt. Lett. 2021, 46, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xu, X.; Song, N.; Li, W.; Zhu, Y.; Liu, J.; Liang, T. Low-Loss Isolated Anti-Resonant Core Photonic Bandgap Fiber. Chin. J. Lasers. 2022, 49, 1906002. [Google Scholar]
- Böhm, K.; Petermann, K.; Weidel, E. Sensitivity of a fiber-optic gyroscope to environmental magnetic fields. Opt. Lett. 1982, 7, 180–182. [Google Scholar] [CrossRef]
- Hotate, K.; Tabe, K. Drift of an optical fiber gyroscope caused by the Faraday effect: Influence of the earth’s magnetic field. Appl. Opt. 1986, 25, 1086–1092. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Gao, F. Photonic Crystal Fiber Optic Gyroscope. Acta Opt. Sin. 2022, 42, 1706002. [Google Scholar]
- Smith, A.M. Polarization and magnetooptic properties of single-mode optical fiber. Appl. Opt. 1978, 17, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.L.; Andres, M.V.; Hernandez, M.A. Faraday effect in standard optical fibers: Dispersion of the effective Verdet constant. Appl. Opt. 1996, 35, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Chen, X.; Hao, P.; Xiao, H.; Ding, Z.; Liu, T.; Yao, X.S. Introduction and measurement of the effective Verdet constant of spun optical fibers. Opt. Express 2021, 29, 23315–23330. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, H.; Dong, W.; Pang, F.; Wen, J.; Chen, Z.; Wang, T. Fabrication of europium-doped silica optical fiber with high Verdet constant. Opt. Express 2016, 24, 18709–18717. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Terrel, M.A.; Kim, H.K.; Digonnet, M.J.; Fan, S. Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber. J. Light. Technol. 2009, 27, 3194–3201. [Google Scholar] [CrossRef]
- Miller, G.A.; Cranch, G.A. Reduction of intensity noise in hollow core optical fiber using angle-cleaved splices. IEEE Photonics Technol. Lett. 2015, 28, 414–417. [Google Scholar] [CrossRef]
- Zaidi, S.H.; Tatam, R.P. Faraday-effect magnetometry: Compensation for the temperature-dependent Verdet constant. Meas. Sci. Technol. 1994, 5, 1471–1479. [Google Scholar] [CrossRef]
- Huang, D.; Srinivasan, S.; Bowers, J.E. Compact Tb doped fiber optic current sensor with high sensitivity. Opt. Express. 2015, 23, 29993–29999. [Google Scholar] [CrossRef]
- Stolen, R.; Turner, E. Faraday rotation in highly birefringent optical fibers. Appl. Opt. 1980, 19, 842–845. [Google Scholar] [CrossRef]
- Ren, S.; Ding, H.; Li, M.; She, S. Magnetic shielding effectiveness for comparators. IEEE Trans. Instrum. Meas. 1995, 44, 422–424. [Google Scholar] [CrossRef]
- Phelps, G.; Abney, J.; Broering, M.; Korsch, W. A sensitive Faraday rotation setup using triple modulation. Rev. Sci. Instrum. 2015, 86, 073107. [Google Scholar] [CrossRef] [PubMed]
- Weber, M. Faraday rotator materials for laser systems. Laser Nonlinear Opt. Mater. 1987, 681, 75–90. [Google Scholar] [CrossRef]
- Kim, H.K.; Digonnet, M.J.; Kino, G.S. Air-core photonic-bandgap fiber-optic gyroscope. J. Light. Technol. 2006, 24, 3169. [Google Scholar]
- Sun, L.; Jiang, S.; Zuegel, J.; Marciante, J. Effective Verdet constant in a terbium-doped-core phosphate fiber. Opt. Lett. 2009, 34, 1699–1701. [Google Scholar] [CrossRef]
- Lefevre, H.C. The Fiber-Optic Gyroscope, 3rd ed.; Artech House: Norwood, MA, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Du, H.; Lin, Y.; Yu, Z. Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression. Photonics 2024, 11, 366. https://doi.org/10.3390/photonics11040366
Guo Z, Du H, Lin Y, Yu Z. Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression. Photonics. 2024; 11(4):366. https://doi.org/10.3390/photonics11040366
Chicago/Turabian StyleGuo, Zhiyong, Haoqi Du, Yuhao Lin, and Zhangjun Yu. 2024. "Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression" Photonics 11, no. 4: 366. https://doi.org/10.3390/photonics11040366
APA StyleGuo, Z., Du, H., Lin, Y., & Yu, Z. (2024). Weak Faraday Effect Measurement in Anti-Resonant Fiber Based on Intermodal Interference Suppression. Photonics, 11(4), 366. https://doi.org/10.3390/photonics11040366