Special Issue on Advances in Photoelectric Tracking Systems: An Overview
1. Introduction
2. An Overview of the Published Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Dong, Q.; Wang, Q.; Wang, C.; Luan, Y.; Wang, X.; Wang, X. Multiobjective optimization of SiC mirror based on dual-parameter coupling. Photonics 2023, 10, 171. https://doi.org/10.3390/photonics10020171.
- Li, B.; Tian, D. Comparative analysis of the effect of cutting piezoelectric ceramics on optically oriented compensation Capability. Photonics 2023, 10, 1136. https://doi.org/10.3390/photonics10101136.
- Jia, B.; Li, Y.; Lv, Q.; Jin, F.; Tian, C. Design of a large field of view and low-distortion off-axis optical system based on a free-form surface. Photonics 2023, 10, 596. https://doi.org/10.3390/photonics10050506.
- Ben, C.; Shen, H.; Yu, X.; Meng, L.; Cheng, H.; Jia, P. Stray light analysis and suppression for an infrared fourier imaging spectrometer. Photonics 2024, 11, 173. https://doi.org/10.3390/photonics11020173.
- Jiang, C.; Chen, T.; Lu, C.; Wu, Z.; Liu, C.; Shao, M.; Cao, J. Automatic inhomogeneous background correction for spatial target detection image based on partition processing. Photonics 2023, 10, 433. https://doi.org/10.3390/photonics10040433.
- Xu, M.; Wang, C.; Shi, H.; Fu, Q.; Li, Y.; Dong, L.; Jiang, H. Deep compressed super-resolution imaging with DMD alignment error correction. Photonics 2023, 10, 581. https://doi.org/10.3390/photonics10050581.
- Ma, T.; Liang, C.; Han, Y.; Yuan, F.; Meng, L.; Xu, Y.; Shen, H.; Liu, Y. Super-resolution imaging enhancement through a 2D scanning galvanometer: Algorithm Formulation and Application in Aerial Optoelectronic Systems. Photonics 2023, 10, 113. https://doi.org/10.3390/photonics10111203.
- Su, Z.; Sang, L.; Hao, J.; Han, B.; Wang, Y.; Ge, P. Research on ground object echo simulation of avian lidar. Photonics 2024, 11, 153. https://doi.org/10.3390/photonics11020153.
- Jia, B.; Jin, F.; Lv, Q.; Li, Y. Improved target laser capture technology for hexagonal honeycomb scanning. Photonics 2023, 10, 541. https://doi.org/10.3390/photonics10050541.
- Liu, C.; Mao, Y.; Qiu, X. Disturbance-observer-based LQR tracking control for electro-optical system. Photonics 2023, 10, 900. https://doi.org/10.3390/photonics10080900.
- Singh, J.; Ahrens, A. Joint-transceiver equalization technique over a 1.4 km multi-mode fiber using optical MIMO technique in IM/DD systems. Photonics 2023, 10, 696. https://doi.org/10.3390/photonics10060696.
- Li, J.; Zhuang, S.; Wang, H.; Deng, J.; Mao, Y. Design of backstepping control based on a softsign linear-nonlinear tracking differentiator for an electro-optical tracking system. Photonics 2024, 11, 156. https://doi.org/10.3390/photonics11020156.
References
- Yin, J.; Cao, Y.; Li, Y.H.; Liao, S.K.; Zhang, L.; Ren, J.G.; Cai, W.Q.; Liu, W.Y.; Li, B.; Dai, H.; et al. Satellite-based entanglement distribution over 1200 kilometers. Science 2017, 356, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mao, Y.; Qi, B.; Zhou, X.; Liu, Q.; Zhou, Q. Research on control technology of single detection based on position correction in quantum optical communication. Opto-Electron. Eng. 2022, 49, 210311. [Google Scholar]
- Luo, Y.; Liu, K.; Yang, F.; Wen, X.; Huang, Y.; Guo, S.; Ren, G.; Li, T. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system. Opto-Electron. Eng. 2023, 50, 220330. [Google Scholar]
- Bharathi, M.; Bhatt, V.; Kumar, V.R.; Sharma, R.J.; Hemavathi, S.; Pant, B.; Arani, R.P.; Sathish, T.; Mohanavel, V. Developing a dual axis photoelectric tracking module using a multi quadrant photoelectric device. Energy Rep. 2022, 8, 1426–1439. [Google Scholar]
- Lu, C.Y.; Cao, Y.; Peng, C.Z.; Pan, J.W. Micius quantum experiments in space. Rev. Mod. Phys. 2022, 94, 035001. [Google Scholar] [CrossRef]
- Qi, B.; Chen, H.; Ren, G.; Huang, Y.; Ding, K.; Ma, J. ATP technology for 100-kilometer quantum entanglement distribution experiment. Opt. Precis. Eng. 2013, 21, 1628–1634. [Google Scholar]
- Wu, Y.; Wen, L.; Tang, T. Line-of-sight stabilization enhancement with hybrid sensing in a piezoelectric mirror-based cubic stewart platform. IEEE Trans. Aerosp. Electron. Syst. 2024, 1–11. [Google Scholar] [CrossRef]
- Cao, K.; Hao, G.; Li, B.; Du, H.; Tan, L. Modified steady tracking strategy for composite axes system in free-space laser communication. Opt. Eng. 2023, 62, 078101. [Google Scholar] [CrossRef]
- Glück, M.; Pott, J.U.; Sawodny, O. Piezo-actuated vibration disturbance mirror for investigating accelerometer-based tip-tilt reconstruction in large telescopes. IFAC-PapersOnLine 2016, 49, 361–366. [Google Scholar] [CrossRef]
- Tang, T.; Niu, S.; Ma, J.; Qi, B.; Ren, G.; Huang, Y. A review on control methodologies of disturbance rejections in optical telescope. Opto-Electron. Adv. 2019, 2, 190011. [Google Scholar] [CrossRef]
- Luo, Y.; Mao, Y.; Ren, W.; Huang, Y.; Deng, C.; Zhou, X. Multiple fusion based on the CCD and MEMS accelerometer for the low-cost multi-loop optoelectronic system control. Sensors 2018, 18, 2153. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Qi, B.; Yang, T. Youla–Kucera parameterization-based optimally closed-loop control for tip–tilt compensation. IEEE Sens. J. 2018, 18, 6154–6160. [Google Scholar] [CrossRef]
- Bian, Q.; Wang, Y.; Ruan, Y.; Tang, T. Accelerometer-assisted disturbance feedforward control of an inertially stabilized platform. IEEE Sens. J. 2023, 23, 9880–9888. [Google Scholar] [CrossRef]
- Yang, H.; Li, W. Performance measurement of photoelectric detection and target tracking algorithm. Int. J. Smart Sens. Intell. Syst. 2015, 8, 1554–1575. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Bao, Q.; Wang, Y.; Mao, Y. Special Issue on Advances in Photoelectric Tracking Systems: An Overview. Photonics 2024, 11, 314. https://doi.org/10.3390/photonics11040314
Deng J, Bao Q, Wang Y, Mao Y. Special Issue on Advances in Photoelectric Tracking Systems: An Overview. Photonics. 2024; 11(4):314. https://doi.org/10.3390/photonics11040314
Chicago/Turabian StyleDeng, Jiuqiang, Qiliang Bao, Yutang Wang, and Yao Mao. 2024. "Special Issue on Advances in Photoelectric Tracking Systems: An Overview" Photonics 11, no. 4: 314. https://doi.org/10.3390/photonics11040314
APA StyleDeng, J., Bao, Q., Wang, Y., & Mao, Y. (2024). Special Issue on Advances in Photoelectric Tracking Systems: An Overview. Photonics, 11(4), 314. https://doi.org/10.3390/photonics11040314