Effects of Excitation Angle on Air-Puff-Stimulated Surface Acoustic Wave-Based Optical Coherence Elastography (SAW-OCE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air-Puff Stimulation System and PhS-Optical Coherence Tomography
2.2. Experimental Samples
2.2.1. Silicone Phantom
2.2.2. Participant Recruitment
2.3. Air-Puff-Stimulated SAW Characterization and Evaluation
3. Results
3.1. Data Analysis for Phantom Experiment
3.2. Data Analysis for In-Vivo Human Skin Experiment
3.3. Young’s Modulus Measurement of In-Vivo Human Skin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Liang, W.; Jiao, Y.; Song, H.; Peng, Q.; Luo, H.; Zhang, Y.; Xu, J.; Dong, F. A Preliminary Comparative Study of Young’s Modulus Versus Shear Modulus in the Diagnosis of Breast Cancer. Ultrasound Q. 2019, 35, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Wakhlu, A.; Chowdhury, A.; Mohindra, N.; Tripathy, S.; Misra, D.; Agarwal, V. Assessment of extent of skin involvement in scleroderma using shear wave elastography. Indian J. Rheumatol. 2017, 12, 194. [Google Scholar]
- Cummins, D.L.; Cummins, J.M.; Pantle, H.; Silverman, M.A.; Leonard, A.L.; Chanmugam, A. Cutaneous Malignant Melanoma. Mayo Clin. Proc. 2006, 81, 500–507. [Google Scholar] [CrossRef]
- Song, S.; Huang, Z.; Nguyen, T.-M.; Wong, E.Y.; Arnal, B.; O’Donnell, M.; Wang, R.K. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. J. Biomed. Opt. 2013, 18, 121509. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Verma, Y.; Rao, K.D.; Gupta, P.K. Determination of Elastic Properties of Resected Human Breast Tissue Samples Using Optical Coherence Tomographic Elastography: Elastic Properties of Breast Tissues. Strain 2011, 47, 75–87. [Google Scholar] [CrossRef]
- Schmitt, J.M. OCT elastography: Imaging microscopic deformation and strain of tissue. Opt. Express. 1998, 3, 199. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Han, Z.; Li, J.; Vantipalli, S.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography. J. Cataract Refract. Surg. 2018, 44, 1023–1031. [Google Scholar] [CrossRef]
- Zhu, J.; He, X.; Chen, Z. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues. Appl. Spectrosc. Rev. 2019, 54, 457–481. [Google Scholar] [CrossRef]
- Kennedy, K.M.; Ford, C.; Kennedy, B.F.; Bush, M.B.; Sampson, D.D. Analysis of mechanical contrast in optical coherence elastography. J. Biomed. Opt. 2013, 18, 121508. [Google Scholar] [CrossRef]
- Syed, S.H.; Larin, K.V.; Dickinson, M.E.; Larina, I.V. Optical coherence tomography for high-resolution imaging of mouse development in utero. J. Biomed. Opt. 2011, 16, 046004. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, S.; Dai, Y.; Bao, C.; Ye, S.; Zhou, Y.; Wang, Y.; Huang, S.; Wang, Y.; Shen, M.; et al. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography. J. Biophotonics 2020, 13, e202000104. [Google Scholar] [CrossRef]
- Lan, G.; Aglyamov, S.R.; Larin, K.V.; Twa, M.D. In Vivo Human Corneal Shear-wave Optical Coherence Elastography. Optom. Vis. Sci. 2021, 98, 58–63. [Google Scholar] [CrossRef]
- Mulligan, J.A.; Untracht, G.R.; Chandrasekaran, S.N.; Brown, C.N.; Adie, S.G. Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 246–265. [Google Scholar] [CrossRef]
- Popescu, D.P.; Choo-Smith, L.-P.; Flueraru, C.; Mao, Y.; Chang, S.; Disano, J.; Sherif, S.; Sowa, M.G. Optical coherence tomography: Fundamental principles, instrumental designs and biomedical applications. Biophys. Rev. 2011, 3, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, B.F.; Kennedy, K.M.; Sampson, D.D. A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 272–288. [Google Scholar] [CrossRef]
- Li, C.; Guan, G.; Cheng, X.; Huang, Z.; Wang, R.K. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Opt. Lett. 2012, 37, 722–724. [Google Scholar] [CrossRef]
- Wang, R.K.; Kirkpatrick, S.; Hinds, M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl. Phys. Lett. 2007, 90, 164105. [Google Scholar] [CrossRef]
- Zhou, K.; Feng, K.; Li, C.; Huang, Z. A Weighted Average Phase Velocity Inversion Model for Depth-Resolved Elasticity Evaluation in Human Skin In-Vivo. IEEE Trans. Biomed. Eng. 2021, 68, 1969–1977. [Google Scholar] [CrossRef]
- Zhou, K.; Le, N.; Huang, Z.; Li, C. High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography. J. Biophotonics 2018, 11, e201700051. [Google Scholar] [CrossRef]
- Yang, C.; Xiang, Z.; Li, Z.; Nan, N.; Wang, X. Optical coherence elastography to evaluate depth-resolved elasticity of tissue. Opt. Express 2022, 30, 8709. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Wang, Y.; Ai, S.; Zhu, Y.; Shi, G.; Han, X.; Zhao, Y.; Yang, H.; He, X. Point-to-point optical coherence elastography using a novel phase velocity method. Opt. Lasers Eng. 2023, 163, 107489. [Google Scholar] [CrossRef]
- Singh, M.; Li, J.; Vantipalli, S.; Wang, S.; Han, Z.; Nair, A.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 266–276. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Arnal, B.; Song, S.; Huang, Z.; Wang, R.K.; O’Donnell, M. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography. J. Biomed. Opt. 2015, 20, 16001. [Google Scholar] [CrossRef]
- Li, R.; Du, Z.; Qian, X.; Li, Y.; Martinez-Camarillo, J.-C.; Jiang, L.; Humayun, M.S.; Chen, Z.; Zhou, Q. High resolution optical coherence elastography of retina under prosthetic electrode. Quant. Imaging Med. Surg. 2020, 11, 918–927. [Google Scholar] [CrossRef]
- Kennedy, B.F.; Hillman, T.R.; McLaughlin, R.A.; Quirk, B.C.; Sampson, D.D. In vivo dynamic optical coherence elastography using a ring actuator. Opt. Express 2009, 17, 21762–21772. [Google Scholar] [CrossRef]
- Liu, C.H.; Nevozhay, D.; Schill, A.; Singh, M.; Das, S.; Nair, A.; Han, Z.; Aglyamov, S.; Larin, K.V.; Sokolov, K.V. Nanobomb optical coherence elastography. Opt. Lett. 2018, 43, 2006. [Google Scholar] [CrossRef]
- Razani, M.; Mariampillai, A.; Sun, C.; Luk, T.W.H.; Yang, V.X.D.; Kolios, M.C. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms. Biomed. Opt. Express 2012, 3, 972–980. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V.; Li, J.; Vantipalli, S.; Manapuram, R.K.; Aglyamov, S.; Emelianov, S.; Twa, M.D. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity. Laser Phys. Lett. 2013, 10, 075605. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, J.; Manapuram, R.K.; Menodiado, F.M.; Ingram, D.R.; Twa, M.D.; Lazar, A.J.; Lev, D.C.; Pollock, R.E.; Larin, K.V. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system. Opt Lett. 2012, 37, 5184–5186. [Google Scholar] [CrossRef] [PubMed]
- Larin, K.V.; Sampson, D.D. Optical coherence elastography—OCT at work in tissue biomechanics [Invited]. Biomed. Opt. Express 2017, 8, 1172–1202. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.A.; Pelivanov, I.; Song, S.; Ambrozinski, Ł.; Yoon, S.J.; Gao, L.; Li, D.; Shen, T.T.; Wang, R.K.; O’donnell, M. Optical coherence elastography in ophthalmology. J. Biomed. Opt. 2017, 22, 121720–121728. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, V.Y.; Matveyev, A.L.; Matveev, L.A.; Sovetsky, A.A.; Hepburn, M.S.; Mowla, A.; Kennedy, B.F. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances. J. Biophotonics 2021, 14, e202000257. [Google Scholar] [CrossRef]
- Li, C.; Song, S.; Guan, G.; Wang, R.K.; Huang, Z. Frequency dependence of laser ultrasonic SAW phase velocities measurements. Ultrasonics 2013, 53, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Larin, K.V. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed. Opt. Express 2014, 5, 3807–3821. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Li, J.; Singh, M.; Wu, C.; Liu, C.-H.; Wang, S.; Idugboe, R.; Raghunathan, R.; Sudheendran, N.; Aglyamov, S.R.; et al. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: A comparison study. Phys. Med. Biol. 2015, 60, 3531–3547. [Google Scholar] [CrossRef]
- Han, Z.; Singh, M.; Aglyamov, S.R.; Liu, C.H.; Nair, A.; Raghunathan, R.; Wu, C.; Li, J.; Larin, K.V. Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model. J. Biomed. Opt. 2016, 21, 090504. [Google Scholar] [CrossRef]
- Vekilov, D.P.; Singh, M.; Aglyamov, S.R.; Larin, K.V.; Grande-Allen, K.J. Mapping the spatial variation of mitral valve elastic properties using air-pulse optical coherence elastography. J. Biomech. 2019, 93, 52–59. [Google Scholar] [CrossRef]
- Curatolo, A.; Birkenfeld, J.S.; Martinez-Enriquez, E.; Germann, J.A.; Muralidharan, G.; Palací, J.; Pascual, D.; Eliasy, A.; Abass, A.; Solarski, J.; et al. Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities. Biomed. Opt. Express 2020, 11, 6337–6355. [Google Scholar] [CrossRef]
- Hashimoto, I. Trigeminal evoked potentials following brief air puff: Enhanced signal-to-noise ratio. Ann. Neurol. 1988, 23, 332–338. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, K.; Feng, Z.; Feng, K.; Ji, Y.; Li, C.; Huang, Z. Viscoelastic properties’ characterization of corneal stromal models using non-contact surface acoustic wave optical coherence elastography (SAW-OCE). J. Biophotonics 2022, 15, e202100253. [Google Scholar] [CrossRef]
- Lan, G.; Gu, B.; Larin, K.V.; Twa, M.D. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration. Transl. Vis. Sci. Technol. 2020, 9, 3. [Google Scholar] [CrossRef]
- Lan, G.; Singh, M.; Larin, K.V.; Twa, M.D. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography. Biomed. Opt. Express 2017, 8, 5253–5266. [Google Scholar] [CrossRef]
- Zvietcovich, F.; Singh, M.; Ambekar, Y.S.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Micro Air-Pulse Spatial Deformation Spreading Characterizes Degree of Anisotropy in Tissues. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 6800810. [Google Scholar] [CrossRef]
- Jiménez-villar, A.; Mączyńska, E.; Cichański, A.; Wojtkowski, M.; Kałużny, B.J.; Grulkowski, I. High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics. Biomed. Opt. Express 2019, 10, 3663–3680. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Aglyamov, S.R.; Li, J.; Singh, M.; Wang, S.; Vantipalli, S.; Wu, C.; Liu, C.H.; Twa, M.D.; Larin, K.V. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation. J. Biomed. Opt. 2015, 20, 020501. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Singh, M.; Aglyamov, S.; Emelianov, S.; Twa, M.D.; Larin, K.V. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo. Laser Phys. Lett. 2014, 11, 065601. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Manapuram, R.K.; Singh, M.; Menodiado, F.M.; Aglyamov, S.; Emelianov, S.; Twa, M.D.; Larin, K.V. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo. J. Biomed. Opt. 2013, 18, 121503. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Singh, M.; Liu, C.-H.; Han, Z.; Li, J.; Raghunathan, R.; Larin, K.V. Assessing the changes in the biomechanical properties of the crystalline lens induced by cold cataract with air-pulse OCE. In Proceedings of the 5th International Scientific Conference New Operational Technologies, Tomsk, Russia, 21–25 September 2015; p. 020003. Available online: https://pubs.aip.org/aip/acp/article/805544 (accessed on 6 March 2024).
- Singh, M.; Wu, C.; Liu, C.-H.; Li, J.; Schill, A.; Nair, A.; Larin, K.V. Phase-sensitive optical coherence elastography at 15 million A-Lines per second. Opt. Lett. 2015, 40, 2588–2591. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.K.; Nuttall, A.L. Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study. J. Biomed. Opt. 2010, 15, 056005. [Google Scholar] [CrossRef] [PubMed]
- James, F.D. Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms; Springer: New York, NY, USA, 1997. [Google Scholar]
- Zhang, X.; Osborn, T.G.; Pittelkow, M.R.; Qiang, B.; Kinnick, R.R.; Greenleaf, J.F. Quantitative assessment of scleroderma by surface wave technique. Med. Eng. Phys. 2011, 33, 31–37. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, B.; Lee, J.; Lu, N.; Pierce, D.M. A multi-layered model of human skin elucidates mechanisms of wrinkling in the forehead. J. Mech. Behav. Biomed. Mater. 2020, 105, 103694. [Google Scholar] [CrossRef] [PubMed]
- Frier, W.; Abdouni, A.; Pittera, D.; Georgiou, O.; Malkin, R. Simulating Airborne Ultrasound Vibrations in Human Skin for Haptic Applications. IEEE Access 2022, 10, 15443–15456. [Google Scholar] [CrossRef]
- Hara, Y.; Masuda, Y.; Hirao, T.; Yoshikawa, N. The relationship between the Young’s modulus of the stratum corneum and age: A pilot study. Skin Res. Technol. 2013, 19, 339–345. [Google Scholar] [CrossRef] [PubMed]
Method | Young’s Modulus (kPa) |
---|---|
Tensile Test | 81.35 ± 2.14 |
Air-puff-stimulated SAW-OCE | 83.65 ± 1.35 |
Palm | |||||
Research | Numbers of subjects | Age range | Young’s modulus (kPa) | Method | Stimulation System |
This research | 10 | 21–30 | 164 ± 42 | SAW-OCE | Air-puff |
Zhou [18] | 11 | 22–36 | 212 ± 78 | Depth-resolved SAW-OCE | Piezoelectric actuator |
Zhang [52] | 30 | 46–61 | 108 ± 48 | SAW elastography | Mechanical shaker |
Back of hand | |||||
Research | Numbers of subjects | Age range | Young’s modulus (kPa) | Method | Stimulation System |
This research | 10 | 21–30 | 41 ± 22 | SAW-OCE | Air-puff |
Zhou [18] | 11 | 22–36 | 29 ± 8 | Depth-resolved SAW-OCE | Piezoelectric actuator |
Wakhlu [2] | 16 | 29–53 | 11–23 | Ultrasound elastography | Mechanical shaker |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Zhang, Y.; Jiang, W.; Wang, W.; Li, C.; Huang, Z. Effects of Excitation Angle on Air-Puff-Stimulated Surface Acoustic Wave-Based Optical Coherence Elastography (SAW-OCE). Photonics 2024, 11, 254. https://doi.org/10.3390/photonics11030254
Feng Z, Zhang Y, Jiang W, Wang W, Li C, Huang Z. Effects of Excitation Angle on Air-Puff-Stimulated Surface Acoustic Wave-Based Optical Coherence Elastography (SAW-OCE). Photonics. 2024; 11(3):254. https://doi.org/10.3390/photonics11030254
Chicago/Turabian StyleFeng, Zhengshuyi, Yilong Zhang, Weiyi Jiang, Weichen Wang, Chunhui Li, and Zhihong Huang. 2024. "Effects of Excitation Angle on Air-Puff-Stimulated Surface Acoustic Wave-Based Optical Coherence Elastography (SAW-OCE)" Photonics 11, no. 3: 254. https://doi.org/10.3390/photonics11030254
APA StyleFeng, Z., Zhang, Y., Jiang, W., Wang, W., Li, C., & Huang, Z. (2024). Effects of Excitation Angle on Air-Puff-Stimulated Surface Acoustic Wave-Based Optical Coherence Elastography (SAW-OCE). Photonics, 11(3), 254. https://doi.org/10.3390/photonics11030254