A Theoretical Investigation of an Ultrawide S-, C- and L-Band-Tunable Random Fiber Laser Based on the Combination of Tellurite Fiber and Erbium-Doped Fiber
Abstract
:1. Introduction
2. Principle and the Numerical Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Taiy, H.; Wenzel, N.; Preußler, S.; Klinger, J.; Schneider, T. Ultra-Narrow Linewidth, Stable and Tunable Laser Source for Optical Communication Systems and Spectroscopy. Opt. Lett. 2014, 39, 5826–5829. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Yang, D.; Ye, W.; Kong, J.; Shen, Y. Widely Tunable Compact Erbium-Doped Fiber Ring Laser for Fiber-Optic Sensing Applications. Opt. Laser Technol. 2009, 41, 392–396. [Google Scholar] [CrossRef]
- Dong, B.; He, S.; Hu, S.; Tian, D.; Lv, J.; Zhao, Q. Time-Division Multiplexing Fiber Grating Sensor with a Tunable Pulsed Laser. IEEE Photon. Technol. Lett. 2006, 18, 2620–2622. [Google Scholar] [CrossRef]
- Masson, J.; St-Gelais, R.; Poulin, A.; Peter, Y.-A. Tunable Fiber Laser Using a MEMS-Based in Plane Fabry-Pérot Filter. IEEE J. Quantum Electron. 2010, 46, 1313–1319. [Google Scholar] [CrossRef]
- Supradeepa, V.R.; Feng, Y.; Nicholson, J.W. Raman Fiber Lasers. J. Opt. 2017, 19, 023001. [Google Scholar] [CrossRef]
- Babin, S.A.; Churkin, D.V.; Kablukov, S.I.; Rybakov, M.A.; Vlasov, A.A. All-Fiber Widely Tunable Raman Fiber Laser with Controlled Output Spectrum. Opt. Express 2007, 15, 8438–8443. [Google Scholar] [CrossRef]
- Turitsyn, S.K.; Babin, S.A.; El-Taher, A.E.; Harper, P.; Churkin, D.V.; Kablukov, S.I.; Ania-Castañón, J.D.; Karalekas, V.; Podivilov, E.V. Random Distributed Feedback Fibre Laser. Nat. Photon 2010, 4, 231–235. [Google Scholar] [CrossRef]
- Tan, M.; Rosa, P.; Le, S.T.; Iqbal, M.A.; Phillips, I.D.; Harper, P. Transmission Performance Improvement Using Random DFB Laser Based Raman Amplification and Bidirectional Second-Order Pumping. Opt. Express 2016, 24, 2215–2221. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, W.; Huang, W. Review of Random Fiber Lasers for Optical Fiber Sensors. Sensors 2023, 23, 8500. [Google Scholar] [CrossRef]
- Ma, R.; Wang, Z.; Hui Zhang, H.; Zhang, W.L.; Jiang Rao, Y. Imaging through Opacity Using a Near-Infrared Low-Spatial-Coherence Fiber Light Source. Opt. Lett. 2020, 45, 3816–3819. [Google Scholar] [CrossRef]
- Wu, H.; Han, B.; Wang, Z.; Genty, G.; Feng, G.; Liang, H. Temporal Ghost Imaging with Random Fiber Lasers. Opt. Express 2020, 28, 9957–9964. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, W.; Hu, B.; Li, Y.; Tian, K.; Ma, R.; Li, C.; Liu, J.; Yao, J.; Liang, H. Widely Tunable Continuous-Wave Visible and Mid-Infrared Light Generation Based on a Dual-Wavelength Switchable and Tunable Random Raman Fiber Laser. Photonics Res. 2023, 11, 808–816. [Google Scholar] [CrossRef]
- Rota-Rodrigo, S.; Gouhier, B.; Dixneuf, C.; Antoni-Micollier, L.; Guiraud, G.; Leandro, D.; Lopez-Amo, M.; Traynor, N.; Santarelli, G. Watt-level green random laser at 532 nm by SHG of a Yb-doped fiber laser. Opt. Lett. 2018, 43, 4284–4287. [Google Scholar] [CrossRef] [PubMed]
- Dontsova, E.I.; Kablukov, S.I.; Vatnik, I.D.; Babin, S.A. Frequency Doubling of Raman Fiber Lasers with Random Distributed Feedback. Opt. Lett. 2016, 41, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Babin, S.A.; El-Taher, A.E.; Harper, P.; Podivilov, E.V.; Turitsyn, S.K. Tunable Random Fiber Laser. Phys. Rev. A 2011, 84, 021805. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X.; Shum, P.P.; Su, H. Tunable Erbium-Doped Fiber Laser Based on Random Distributed Feedback. IEEE Photonics J. 2014, 6, 1–5. [Google Scholar] [CrossRef]
- Li, Z.; He, W.; Zhang, W.; Liu, H.; Li, S.; Tan, Q.; Zhu, L. Wavelength tunable double-ring cavity erbium-doped random fiber laser based on a Mach–Zehnder interferometer. Opt. Fiber Technol. 2023, 79, 103337. [Google Scholar] [CrossRef]
- Du, X.; Zhang, H.; Wang, X.; Zhou, P. Tunable Random Distributed Feedback Fiber Laser Operating at 1 µm. Appl. Opt. 2015, 54, 908–911. [Google Scholar] [CrossRef]
- Wu, H.; Wang, W.; Li, Y.; Li, C.; Yao, J.; Wang, Z.; Liang, H. Difference-Frequency Generation of Random Fiber Lasers for Broadly Tunable Mid-Infrared Continuous-Wave Random Lasing Generation. J. Light. Technol. 2022, 40, 2965–2970. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.; Sun, W.; He, Q.; Wei, Z.; Rao, Y.-J. 1.5 μm Low Threshold, High Efficiency Random Fiber Laser with Hybrid Erbium–Raman Gain. J. Light. Technol. 2018, 36, 844–849. [Google Scholar] [CrossRef]
- Bian, S.; Li, W.; Song, S. C- and L-Band Tunable Random Distributed Feedback Fiber Laser. In Proceedings of the 2016 Photonics North (PN), Quebec City, QC, Canada, 24–26 May 2016; p. 1. [Google Scholar]
- Su, B.; Luo, Q.; Zhao, L.; Chu, L.; Wang, L.; Liu, C.; He, X. Optimization of Widely Tuneable Hybrid Erbium-Raman-Gain Random Fibre Laser: Theoretical Investigation. J. Mod. Opt. 2021, 68, 847–855. [Google Scholar] [CrossRef]
- Balaswamy, V.; Aparanji, S.; Arun, S.; Ramachandran, S.; Supradeepa, V.R. High-Power, Widely Wavelength Tunable, Grating-Free Raman Fiber Laser Based on Filtered Feedback. Opt. Lett. 2019, 44, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, H.; Yang, X.; Pan, W.; Cui, S.; Feng, Y. Nearly-Octave Wavelength Tuning of a Continuous Wave Fiber Laser. Sci. Rep. 2017, 7, 42611. [Google Scholar] [CrossRef] [PubMed]
- Balaswamy, V.; Ramachandran, S.; Supradeepa, V.R. High-Power, Cascaded Random Raman Fiber Laser with near Complete Conversion over Wide Wavelength and Power Tuning. Opt. Express 2019, 27, 9725–9732. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Jiang, H.; Yang, X.; Pan, W.; Cui, S.; Feng, Y. High order cascaded Raman random fiber laser with high spectral purity. Opt. Express 2018, 26, 5275–5280. [Google Scholar] [CrossRef]
- Wu, H.; Han, B.; Liu, Y. Tunable Narrowband Cascaded Random Raman Fiber Laser. Opt. Express 2021, 29, 21539–21550. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, J.; Ye, J.; Xu, J.; Yao, T.; Zhou, P. Tunable Random Raman Fiber Laser at 17 μm Region with High Spectral Purity. Opt. Express 2019, 27, 28800–28807. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, J.; Ma, X.; Xu, J.; Song, J.; Yao, T.; Zhou, P. High Power Tunable Multiwavelength Random Fiber Laser at 1.3 μm Waveband. Opt. Express 2021, 29, 5516–5524. [Google Scholar] [CrossRef]
- Mori, A.; Masuda, H.; Shikano, K.; Shimizu, M. Ultra-Wide-Band Tellurite-Based Fiber Raman Amplifier. J. Light. Technol. 2003, 21, 1300–1306. [Google Scholar] [CrossRef]
- Qin, G.; Liao, M.; Suzuki, T.; Mori, A.; Ohishi, Y. Widely Tunable Ring-Cavity Tellurite Fiber Raman Laser. Opt. Lett. 2008, 33, 2014–2016. [Google Scholar] [CrossRef]
- Yao, T.; Huang, L.; Zhou, P.; Lei, B.; Leng, J.; Chen, J. Power Scaling on Tellurite Glass Raman Fibre Lasers for Mid-Infrared Applications. High Power Laser Sci. Eng. 2018, 6, e24. [Google Scholar] [CrossRef]
- Zhu, G.; Geng, L.; Zhu, X.; Li, L.; Chen, Q.; Norwood, R.A.; Manzur, T.; Peyghambarian, N. Towards Ten-Watt-Level 3-5 μm Raman Lasers Using Tellurite Fiber. Opt. Express 2015, 23, 7559–7573. [Google Scholar] [CrossRef] [PubMed]
- Anashkina, E.A.; Andrianov, A.V. Numerical Analysis of Dual-Wavelength Tungsten-Tellurite Fiber Raman Lasers with Controllable Mode Switching. Fibers 2023, 11, 84. [Google Scholar] [CrossRef]
- Mori, A.; Sakamoto, T.; Kobayashi, K.; Shikano, K.; Oikawa, K.; Hoshino, K.; Kanamori, T.; Ohishi, Y.; Shimizu, M. 1.58-μm Broad-Band Erbium-Doped Tellurite Fiber Amplifier. J. Light. Technol. 2002, 20, 822–827. [Google Scholar] [CrossRef]
- Ohishi, Y.; Mori, A.; Yamada, M.; Ono, H.; Nishida, Y.; Oikawa, K. Gain Characteristics of Tellurite-Based Erbium-Doped Fiber Amplifiers for 1.5-μm Broadband Amplification. J. Opt. Lett. 1998, 23, 274–276. [Google Scholar] [CrossRef]
- Tian, Y.; Yao, T.; Zhou, P.; Zhang, H.; Leng, J.; Xu, J.; Chen, J. Numerical Modeling and Optimization of Mid-Infrared Random Distributed Feedback Fiber Lasers. Laser Phys. 2018, 28, 075104. [Google Scholar] [CrossRef]
Wavelength (nm) | ε (m−1) | g (W−1km−1) | α (dB/km) |
---|---|---|---|
1480 | 1.67 × 10−5 | 26 | 21.6 |
1550 | 1.38 × 10−5 | 36.4 | 20 |
1580 | 1.28 × 10−5 | 17.8 | 19.9 |
1640 | 1.10 × 10−5 | 32.6 | 22.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, Y.; Liang, H.; Wu, H. A Theoretical Investigation of an Ultrawide S-, C- and L-Band-Tunable Random Fiber Laser Based on the Combination of Tellurite Fiber and Erbium-Doped Fiber. Photonics 2024, 11, 247. https://doi.org/10.3390/photonics11030247
Chen L, Li Y, Liang H, Wu H. A Theoretical Investigation of an Ultrawide S-, C- and L-Band-Tunable Random Fiber Laser Based on the Combination of Tellurite Fiber and Erbium-Doped Fiber. Photonics. 2024; 11(3):247. https://doi.org/10.3390/photonics11030247
Chicago/Turabian StyleChen, Lu, Yang Li, Houkun Liang, and Han Wu. 2024. "A Theoretical Investigation of an Ultrawide S-, C- and L-Band-Tunable Random Fiber Laser Based on the Combination of Tellurite Fiber and Erbium-Doped Fiber" Photonics 11, no. 3: 247. https://doi.org/10.3390/photonics11030247
APA StyleChen, L., Li, Y., Liang, H., & Wu, H. (2024). A Theoretical Investigation of an Ultrawide S-, C- and L-Band-Tunable Random Fiber Laser Based on the Combination of Tellurite Fiber and Erbium-Doped Fiber. Photonics, 11(3), 247. https://doi.org/10.3390/photonics11030247