Enhanced PON and AMCC Joint Transmission with GMM-Based Probability Shaping Techniques
Abstract
:1. Introduction
2. Interference Modeling and Error Symbol Analysis
3. Enhanced Transmission System Utilizing GMM-Based Probability Shaping Techniques
3.1. GMM-Based Probabilistic Shaping Techniques
3.2. Enhanced Transmission Systems with Joint Transmitter-Receiver Optimization
4. Experimental Results and Discussion
4.1. Experimental System
4.2. Distribution and Error Symbol
4.3. System Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NTT DOCOMO. White Paper 5G Evolution and 6G, Version 5.0. 2023. Available online: https://www.docomo.ne.jp/english/corporate/technology/whitepaper_6g/ (accessed on 1 February 2023).
- China Mobile; China Telecom; China Unicom. 5G-Advanced Technology Evolution from a Network Perspective 2.0. 2022. Available online: https://www-file.huawei.com/-/media/corporate/pdf/news/5g-advanced%20technology%20evolution%20from%20a%20network%20perspective(2022).pdf?la=en (accessed on 1 June 2022).
- Wang, X.; Ji, Y.; Zhang, J.; Bai, L.; Zhang, M. Low-Latency Oriented Network Planning for MEC-Enabled WDM-PON Based Fiber-Wireless Access Networks. IEEE Access 2019, 7, 183383–183395. [Google Scholar] [CrossRef]
- Larsen, L.M.P.; Checko, A.; Christiansen, H.L. A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks. IEEE Commun. Surv. Tutor. 2019, 21, 146–172. [Google Scholar] [CrossRef]
- ITU-T. Rec. G.989.1 40-Gigabit-Capable Passive Optical Networks (NG-PON2): General Requirements Amendment 1. 2013. Available online: https://www.itu.int/rec/T-REC-G.989.1 (accessed on 1 March 2013).
- ITU-T. Rec. G.989.2 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification-Amendment 1. 2019. Available online: https://www.itu.int/rec/T-REC-G.989.2 (accessed on 1 February 2019).
- ITU-T. Rec. G.989.3 40-Gigabit-Capable Passive Optical Networks (NG-PON2): Transmission Convergence Layer Specification. 2015. Available online: https://www.itu.int/rec/T-REC-G.989.3 (accessed on 1 May 2021).
- Suzuki, N.; Yoshima, S.; Miura, H.; Motoshima, K. Demonstration of 100-Gb/s/λ-Based Coherent WDM-PON System Using New AGC EDFA Based Upstream Preamplifier and Optically Superimposed AMCC Function. J. Light. Technol. 2017, 35, 1415–1421. [Google Scholar] [CrossRef]
- Honda, K.; Kobayashi, T.; Nishihara, S.; Shimada, T.; Terada, J.; Otaka, A. Experimental Analysis of LTE Signals in WDM-PON Managed by Embedded Pilot Tone. IEEE Photonics Technol. Lett. 2017, 29, 431–434. [Google Scholar] [CrossRef]
- Nakagawa, G.; Sone, K.; Yoshida, S.; Oda, S.; Hirose, Y.; Hoshida, T. Multi-Vendor Interoperation of SFP+ Transceivers for CPRI Signal Transmission with Superimposed AMCC for Mobile Fronthaul. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; p. Tu3L.5. [Google Scholar]
- Herrera, L.E.Y.; Calliari, F.; Caballero, D.V.; Amaral, G.C.; Urban, P.J.; von der Weid, J.P. Transmitter-Embedded AMCC, LTE-A and OTDR signal for Direct Modulation Analog Radio over Fiber Systems. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; p. W1F.4. [Google Scholar]
- Tan, Z.; Yang, C.; Xu, Z.; Chen, L.; Huang, X.; Guo, H.; Zheng, Z.; Zhang, F.; Wang, Z. Experimental Demonstration for over Mbps Baseband-over-Modulation AMCC Implementation in PtP WDM-PON. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; p. Tu3L.3. [Google Scholar]
- Xu, Z.; Yang, C.; Tan, Z.; Guo, H.; Zhang, F. AMCC Superimposition and Extraction With Interference Elimination for 5G Mobile Fronthaul. IEEE Photonics Technol. Lett. 2018, 30, 1214–1217. [Google Scholar] [CrossRef]
- Villafani Caballero, D.; Herrera, L.Y.; Calliari, F.; Urban, P.; von der Weid, J. Embedded time-multiplexed AMCC and OTDR signals for analog radio over fiber links. Opt. Commun. 2019, 452, 195–199. [Google Scholar] [CrossRef]
- Guo, H.; Yang, C.; Gao, Y.; Li, H. AMCC nonlinear baseband superimposition and extraction aided by proposed interference cancellation for WDM-PON used in 5G mobile fronthaul. Opt. Express 2022, 30, 31602–31613. [Google Scholar] [CrossRef]
- Honda, K.; Nakamura, H.; Hara, K.; Sone, K.; Nakagawa, G.; Hirose, Y.; Hoshida, T.; Terada, J. Wavelength control method of upstream signals using AMCC in WDM-PON for 5G mobile fronthaul. Opt. Express 2019, 27, 26749–26756. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Hara, K.; Nakamura, H.; Sone, K.; Nakagawa, G.; Hirose, Y.; Hoshida, T.; Terada, J. WDM-PON Management and Control by Auxiliary Management and Control Channel for 5G Mobile Fronthaul. Opt. Express 2021, 29, 42457–42470. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kanai, T.; Hara, K.; Chen, M.; Honda, K.; Shindo, T.; Kaneko, S.; Nakamura, H.; Kani, J.i.; Sano, K.; et al. Extraction of AMCC Signal Superposed by SOA-Integrated EA-DFB Laser for In-Service Monitoring in All-Photonics Network. J. Light. Technol. 2022, 40, 5783–5792. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Wu, X.; Nesset, D. Progress of ITU-T higher speed passive optical network (50G-PON) standardization. J. Opt. Commun. Netw. 2020, 12, D99–D108. [Google Scholar] [CrossRef]
- Wey, J.S. The Outlook for PON Standardization: A Tutorial. J. Light. Technol. 2020, 38, 31–42. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, K.; Wei, Y.; Zhao, L.; Zhou, W.; Xiao, J.; Liu, B.; Xin, X.; Yu, J. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON at O-Band Supporting 26 dB+ Loss Budget using Low-Bandwidth Optics and Semiconductor Optical Amplifier. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; p. Th1B.3. [Google Scholar]
- Guo, H.; Yang, C.; Qin, X.; Gao, Y.; Zheng, Z.; Li, H. Up to 20 Mb/s Auxiliary Management and Control Channel Signal Transmission in 50 Gb/s PON System. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), Washington, DC, USA, 6–11 June 2021; p. W1H.4. [Google Scholar]
- Igarashi, R.; Koma, R.; Hara, K.; ichi Kani, J.; Yoshida, T. Simultaneous reception of AMCC signals and QPSK signals by a single coherent receiver with DSP. Opt. Express 2022, 30, 48030–48041. [Google Scholar] [CrossRef]
- Guo, H.; Yang, C.; Gao, Y.; Li, H. Interference Modeling and Joint Demodulation Receiver for Multi-level PON with Baseband AMCC Superimposition. J. Light. Technol. 2023, 1–11. [Google Scholar] [CrossRef]
- Reynolds, D.A.; Quatieri, T.F.; Dunn, R.B. Speaker Verification Using Adapted Gaussian Mixture Models. Digit. Signal Process. 2000, 10, 19–41. [Google Scholar] [CrossRef]
- Böcherer, G.; Steiner, F.; Schulte, P. Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation. IEEE Trans. Commun. 2015, 63, 4651–4665. [Google Scholar] [CrossRef]
- Schulte, P.; Böcherer, G. Constant Composition Distribution Matching. IEEE Trans. Inf. Theory 2016, 62, 430–434. [Google Scholar] [CrossRef]
- He, Z.; Bo, T.; Kim, H. Probabilistically shaped coded modulation for IM/DD system. Opt. Express 2019, 27, 12126–12136. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tang, D.; Zuo, W.; Cui, H.; Wu, Z.; Qiao, Y. Triple-Convex Probabilistic Constellation Shaping PAM8 in IM/DD System. IEEE Photonics Technol. Lett. 2023, 35, 846–849. [Google Scholar] [CrossRef]
- Hossain, M.S.B.; Böcherer, G.; Rahman, T.; Wettlin, T.; Stojanović, N.; Calabrò, S.; Pachnicke, S. Probabilistic Shaping for High-Speed Unamplified IM/DD Systems With an O-Band EML. J. Light. Technol. 2023, 41, 5373–5382. [Google Scholar] [CrossRef]
- Che, D.; Cho, J.; Chen, X. Does Probabilistic Constellation Shaping Benefit IM-DD Systems Without Optical Amplifiers? J. Light. Technol. 2021, 39, 4997–5007. [Google Scholar] [CrossRef]
- Cho, J.; Winzer, P.J. Probabilistic Constellation Shaping for Optical Fiber Communications. J. Light. Technol. 2019, 37, 1590–1607. [Google Scholar] [CrossRef]
- Rabiner, L.; Juang, B. An introduction to hidden Markov models. IEEE ASSP Mag. 1986, 3, 4–16. [Google Scholar] [CrossRef]
- De Leon, P.L.; Pucher, M.; Yamagishi, J.; Hernaez, I.; Saratxaga, I. Evaluation of Speaker Verification Security and Detection of HMM-Based Synthetic Speech. IEEE Trans. Audio, Speech, Lang. Process. 2012, 20, 2280–2290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Yang, C.; Chen, Z.; Li, H. Enhanced PON and AMCC Joint Transmission with GMM-Based Probability Shaping Techniques. Photonics 2024, 11, 227. https://doi.org/10.3390/photonics11030227
Guo H, Yang C, Chen Z, Li H. Enhanced PON and AMCC Joint Transmission with GMM-Based Probability Shaping Techniques. Photonics. 2024; 11(3):227. https://doi.org/10.3390/photonics11030227
Chicago/Turabian StyleGuo, Haipeng, Chuanchuan Yang, Zhangyuan Chen, and Hongbin Li. 2024. "Enhanced PON and AMCC Joint Transmission with GMM-Based Probability Shaping Techniques" Photonics 11, no. 3: 227. https://doi.org/10.3390/photonics11030227
APA StyleGuo, H., Yang, C., Chen, Z., & Li, H. (2024). Enhanced PON and AMCC Joint Transmission with GMM-Based Probability Shaping Techniques. Photonics, 11(3), 227. https://doi.org/10.3390/photonics11030227