Impact of Geometric Input Fibers’ Core Positioning on the Adiabaticity of Photonic Lanterns
Abstract
:1. Introduction
2. Rationale
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leon-Saval, S.G.; Argyros, A.; Bland-Hawthorn, J. Photonic lanterns. Nanophotonics 2013, 2, 429–440. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Argyros, A.; Bland-Hawthorn, J. Photonic lanterns: A study of light propagation in multimode to single-mode converters. Opt. Express 2010, 18, 8430–8439. [Google Scholar] [CrossRef]
- Leon-Saval, S.G.; Fontaine, N.K.; Amezcua-Correa, R. Photonic lantern as mode multiplexer for multimode optical communications. Opt. Fiber Technol. 2017, 35, 46–55. [Google Scholar] [CrossRef]
- Ryf, R.; Fontaine, N.K.; Montoliu, M.; Randel, S.; Ercan, B.; Chen, H.; Chandrasekhar, S.; Gnauck, A.H.; Leon-Saval, S.G.; Bland-Hawthorn, J.; et al. Photonic-lantern-based mode multiplexers for few-mode-fiber transmission. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 9–13 March 2014; Optica Publishing Group: Washington, DC, USA, 2014. [Google Scholar]
- Wen, H.; Xia, C.; Velazquez-Benitez, A.M.; Chand, N.; Antonio-Lopez, J.E.; Huang, B.; Liu, H.; Zheng, H.; Sillard, P.; Liu, X.; et al. First demonstration of six-mode PON achieving a record gain of 4 dB in upstream transmission loss budget. J. Light. Technol. 2015, 34, 1990–1996. [Google Scholar] [CrossRef]
- Wen, H.; Zheng, H.; Mo, Q.; Velázquez-Benítez, A.M.; Xia, C.; Huang, B.; Liu, H.; Yu, H.; Sillard, P.; Lopez, J.E.A.; et al. Few-mode fibre-optic microwave photonic links. Light Sci. Appl. 2017, 6, e17021. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Z.; Ge, D.; Zhu, J.; Tian, Y.; Zhang, Y.; Yu, J.; Li, Z.; Chen, Z.; He, Y. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection. Front. Optoelectron. 2019, 12, 31–40. [Google Scholar] [CrossRef]
- Montoya, J.; Hwang, C.; Martz, D.; Aleshire, C.; Fan, T.Y.; Ripin, D.J. Photonic lantern kW-class fiber amplifier. Opt. Express 2017, 25, 27543–27550. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.; Aleshire, C.; Hwang, C.; Fontaine, N.K.; Velázquez-Benítez, A.; Martz, D.H.; Fan, T.; Ripin, D. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers. Opt. Express 2016, 24, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Yarnall, T.M.; Geisler, D.J.; Schieler, C.M.; Yip, R.B. Analysis of free-space coupling to photonic lanterns in the presence of tilt errors. In Proceedings of the IEEE Photonics Conference, Orlando, FL, USA, 1–5 October 2017. [Google Scholar]
- Norris, B.R.M.; Wei, J.; Betters, C.H.; Wong, A.; Leon-Saval, S.G. An all-photonic focal-plane wavefront sensor. Nat. Commun. 2020, 11, 5335. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fitzgerald, M.P.; Xin, Y.; Guyon, O.; Leon-Saval, S.; Norris, B.; Jovanovic, N. Focal-plane wavefront sensing with photonic lanterns. theoretical framework. J. Opt. Soc. Am. B 2022, 39, 2643–2656. [Google Scholar] [CrossRef]
- Fontaine, N.K.; Ryf, R.; Bland-Hawthorn, J.; Leon-Saval, S.G. Geometric requirements for photonic lanterns in space division multiplexing. Opt. Express 2012, 20, 27123–27132. [Google Scholar] [CrossRef] [PubMed]
- Yerolatsitis, S.; Gris-Sánchez, I.; Birks, T.A. Adiabatically-tapered fiber mode multiplexers. Opt. Express 2014, 22, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Yerolatsitis, S.; Birks, T.A. Six-mode photonic lantern multiplexer made from reduced-cladding fibres. In Proceedings of the European Conference on Optical Communication, Valencia, Spain, 27 September–1 October 2015. [Google Scholar]
- Huang, B.; Fontaine, N.K.; Ryf, R.; Guan, B.; Leon-Saval, S.G.; Shubochkin, R.; Sun, Y.; Lingle, R.; Li, G. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers. Opt. Express 2015, 23, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Benitez, A.M.; Alvarado, J.C.; Lopez-Galmiche, G.; Antonio-Lopez, J.E.; Hernández-Cordero, J.; Sanchez-Mondragon, J.; Sillard, P.; Okonkwo, C.M.; Amezcua-Correa, R. Six mode selective fiber optic spatial multiplexer. Opt. Lett. 2015, 40, 1663–1666. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Benitez, A.M.; Antonio-Lopez, J.E.; Alvarado-Zacarias, J.C.; Lopez-Galmiche, G.; Sillard, P.; Van Ras, D.; Okonkwo, C.; Chen, H.; Ryf, R.; Fontaine, N.K.; et al. Scaling the fabrication of higher order photonic lanterns using microstructured preforms. In Proceedings of the European Conference on Optical Communication, Valencia, Spain, 27 September–1 October 2015. [Google Scholar]
- Huang, B.; Zacarias, J.C.A.; Liu, H.; Fontaine, N.K.; Chen, H.; Ryf, R.; Poletti, F.; Hayes, J.R.; Antonio-Loppez, J.; Zhao, J.; et al. Triple-clad photonic lanterns for mode scaling. Opt. Express 2018, 26, 13390–13396. [Google Scholar] [CrossRef]
- Xia, C.; Chand, N.; Velázquez-Benítez, A.M.; Yang, Z.; Liu, X.; Antonio-Lopez, J.E.; Wen, H.; Zhu, B.; Zhao, N.; Effenberger, F.; et al. Time-division-multiplexed few-mode passive optical network. Opt. Express 2015, 23, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, W.; Chen, Z.; Jiang, M.; Zhou, Q.; Zhang, J.; Li, C.; Chai, J.; Jiang, Z. Spatial mode control based on photonic lanterns. Opt. Express 2021, 29, 41788–41797. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Fu, S.; Zhang, R.; Shen, L.; Tang, M.; Liu, D. Design of elliptical-core five-mode group selective photonic lantern over the C-band. Opt. Express 2019, 27, 27979–27990. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Li, M.; Ping, H.; Wang, J.; Li, X.; Shao, X. Impact of Geometric Input Fibers’ Core Positioning on the Adiabaticity of Photonic Lanterns. Photonics 2024, 11, 222. https://doi.org/10.3390/photonics11030222
Huang B, Li M, Ping H, Wang J, Li X, Shao X. Impact of Geometric Input Fibers’ Core Positioning on the Adiabaticity of Photonic Lanterns. Photonics. 2024; 11(3):222. https://doi.org/10.3390/photonics11030222
Chicago/Turabian StyleHuang, Bin, Meng Li, Hangze Ping, Jiaqi Wang, Xuan Li, and Xiaopeng Shao. 2024. "Impact of Geometric Input Fibers’ Core Positioning on the Adiabaticity of Photonic Lanterns" Photonics 11, no. 3: 222. https://doi.org/10.3390/photonics11030222
APA StyleHuang, B., Li, M., Ping, H., Wang, J., Li, X., & Shao, X. (2024). Impact of Geometric Input Fibers’ Core Positioning on the Adiabaticity of Photonic Lanterns. Photonics, 11(3), 222. https://doi.org/10.3390/photonics11030222