Designing an Optical Router Based on a Multimode-Interference Silicon-On-Insulator Coupler with Tunable Power Transmittance
Abstract
:1. Introduction
2. Device Structure
3. Simulation Methods
4. Results and Discussion
4.1. The Conventional MMI Design
4.1.1. The Input/Output Taper and MMI Length/Width Dimensions’ Optimization
4.1.2. Losses and Crosstalk Variation with Wavelength
4.2. The Angled MMI Design
The Paired Excitation of the Structure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Tian, Z.; Meng, X.; Chai, Z. Methods and applications of on-chip beam splitting: A review. Front. Phys. 2022, 10, 985208. [Google Scholar] [CrossRef]
- Okamoto, K. Fundamentals of Optical Waveguides, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Hu, Y.; Yu, M.; Zhu, D.; Sinclair, N.; Shams-Ansari, A.; Shao, L.; Holzgrafe, J.; Puma, E.; Zhang, M.; Lončar, M. On-chip electro-optic frequency shifters and beam splitters. Nature 2021, 599, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Swillam, M.A.; Bakr, M.H.; Li, X. Design optimization of compact wideband optical switch exploiting staircase index MMI. J. Light. Technol. 2009, 27, 80–87. [Google Scholar] [CrossRef]
- Frishman, A.; Malka, D. An optical 1 × 4 power splitter based on Silicon–Nitride MMI using strip waveguide structures. Nanomaterials 2023, 13, 2077. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiao, J. Ultracompact and broadband silicon-based polarization-independent 1× 2 power splitter using a shallowly etched multimode interference coupler. JOSA B 2021, 38, 3064–3070. [Google Scholar] [CrossRef]
- Samani, A.; El-Fiky, E.; Morsy-Osman, M.; Li, R.; Patel, D.; Hoang, T.; Jacques, M.; Chagnon, M.; Abadía, N.; Plant, D.V. Silicon photonic Mach–Zehnder modulator architectures for on chip PAM-4 signal generation. J. Light. Technol. 2019, 37, 2989–2999. [Google Scholar] [CrossRef]
- Alam, M.S.; Li, X.; Jacques, M.; Xing, Z.; Samani, A.; El-Fiky, E.; Koh, P.C.; Plant, D.V. Net 220 Gbps/λ IM/DD transmission in O-band and C-band with silicon photonic traveling-wave MZM. J. Light. Technol. 2021, 39, 4270–4278. [Google Scholar] [CrossRef]
- Mohamed, S.; Shahada, L.; Swillam, M. Vertical silicon nanowires based directional coupler optical router. IEEE Photonics Technol. Lett. 2018, 30, 789–792. [Google Scholar] [CrossRef]
- Abdelatty, M.Y.; Badr, M.M.; Swillam, M.A. Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides. J. Light. Technol. 2018, 36, 4198–4204. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Q.; Jin, X.; Zhao, J.; Baghsiahi, H.; Selviah, D.R. Microring resonator-based optical router for photonic networks-on-chip. Quantum Electron. 2016, 46, 655. [Google Scholar]
- Tong, Y.; Hu, Z.; Wu, X.; Liu, S.; Chang, L.; Netherton, A.; Chan, C.K.; Bowers, J.E.; Tsang, H.K. An experimental demonstration of 160-Gbit/s PAM-4 using a silicon micro-ring modulator. IEEE Photon. Technol. Lett. 2019, 32, 125–128. [Google Scholar] [CrossRef]
- Swillam, M.A.; Khalil, D.A.; Morshed, A.H. Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: A detailed study. J. Opt. A-Pure Appl. Opt. 2008, 10, 125301. [Google Scholar] [CrossRef]
- Lee, K.Y.; Huang, K.; Lin, Y.J. Novel design of optical filters based on a pair of MMI power divider/combiner. J. Opt. Commun. 2004, 25, 92–94. [Google Scholar] [CrossRef]
- Kribich, K.R.; Copperwhite, R.; Barry, H.; Kolodziejczyk, B.; Sabattié, J.M.; O’Dwyer, K.; MacCraith, B.D. Novel chemical sensor/biosensor platform based on optical multimode interference (MMI) couplers. Sens. Actuators B Chem. 2005, 107, 188–192. [Google Scholar] [CrossRef]
- Elsayed, M.Y.; Sherif, S.M.; Aljaber, A.S.; Swillam, M.A. Integrated lab-on-a-chip optical biosensor using ultrathin silicon waveguide soi mmi device. Sensors 2020, 20, 4955. [Google Scholar] [CrossRef]
- Mohammed, Z.; Paredes, B.; Rasras, M. CMOS compatible ultra-compact MMI based wavelength diplexer with 60 Gbit/s system demonstration. Opt. Express 2022, 30, 8257–8265. [Google Scholar] [CrossRef]
- Song, L.; Liu, W.; Peng, Y.; Liu, H.; Li, H.; Shi, Y.; Dai, D. Low-loss calibration-free 2 × 2 Mach-Zehnder switches with varied-width multimode-interference couplers. J. Light. Technol. 2022, 40, 5254–5259. [Google Scholar] [CrossRef]
- Kim, S.H.; You, J.B.; Rhee, H.W.; Yoo, D.E.; Lee, D.W.; Yu, K.; Park, H.H. High-performance silicon MMI switch based on thermo-optic control of interference modes. IEEE Photonics Technol. Lett. 2018, 30, 1427–1430. [Google Scholar] [CrossRef]
- Hu, Y.; Gardes, F.Y.; Jenkins, R.M.; Finlayson, E.D.; Mashanovich, G.Z.; Reed, G.T. Design of SOI wavelength filter based on multiple MMIs structures. In Silicon Photonics VI; SPIE: Bellingham, WA, USA, 2011; Volume 7943, pp. 225–232. [Google Scholar]
- Zhang, J.; Han, L.; Kuo, B.P.P.; Radic, S. Broadband angled arbitrary ratio SOI MMI couplers with enhanced fabrication tolerance. J. Light. Technol. 2020, 38, 5748–5755. [Google Scholar] [CrossRef]
- Thottoli, A.; Vorobev, A.S.; Biagi, G.; Iadanza, S.; Giglio, M.; Magno, G.; Grande, M.; O’Faolain, L. Compact angled multimode interference duplexers for multi-gas sensing applications. Opt. Express 2024, 32, 3451–3460. [Google Scholar] [CrossRef]
- Bucio, T.D.; Khokhar, A.Z.; Mashanovich, G.Z.; Gardes, F.Y. N-rich silicon nitride angled MMI for coarse wavelength division (de) multiplexing in the O-band. Opt. Lett. 2018, 43, 1251–1254. [Google Scholar] [CrossRef]
- Taha, A.M.; Chandran, S.; Viegas, J.; Bian, Y.; Rakowski, M.; Augur, R.; Jacob, A.; Dahlem, M.S. Compact MMI-based AWGs in a scalable monolithic silicon photonics platform. IEEE Photonics J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Gebregiorgis, Y.; Chandran, S.; Papadovasilakis, M.; Bian, Y.; Rakowski, M.; Aboketaf, A.; Augur, R.; Viegas, J. Straight and curved distributed Bragg reflector design for compact WDM filters. Opt. Express 2023, 31, 11519–11535. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Huang, J.; Wang, Z.; Zhang, J.; Deng, Y.; Lin, G.; Wu, J.; Yang, J. An ultra-compact dual-channel multimode wavelength demultiplexer based on inverse design. Results Phys. 2021, 27, 104489. [Google Scholar] [CrossRef]
- Ansys Lumerical FDTD. Available online: https://www.ansys.com/products/optics/fdtd/ (accessed on 25 January 2024).
- Zhang, Y.; Yang, S.; Lim, A.E.J.; Lo, G.Q.; Galland, C.; Baehr-Jones, T.; Hochberg, M. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express 2013, 21, 1310–1316. [Google Scholar] [CrossRef]
- Palik, E. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Akil, D.S.; Othman, M.A.; Swillam, M.A. A Compact SOI Multimode Optical Router. In Proceedings of the Photonics North Conference, Canada SPIE, 2021, Photonics North (PN), Toronto, ON, Canada, 31 May–2 June 2021; p. 1. [Google Scholar] [CrossRef]
- Ansys Lumerical MODE. Available online: https://www.ansys.com/products/optics/mode (accessed on 25 January 2024).
- Sethi, P.; Haldar, A.; Selvaraja, S.K. Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator. Opt. Express 2017, 25, 10196–10203. [Google Scholar] [CrossRef]
- Chiu, C.L.; Liao, Y.-H. The Critical Adiabatic Linear Tapered Waveguide Combined with a Multimode Waveguide Coupler on an SOI Chip. Int. J. Opt. 2019, 2019, 4270612. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.Z.; Gardes, F.Y.; Nedeljkovic, M.; Hu, Y.; Thomson, D.J.; Li, K.; Wilson, P.R.; Chen, S.W.; Hsu, S.S. Recent breakthroughs in carrier depletion-based silicon optical modulators. Nanophotonics 2014, 3, 229–245. [Google Scholar] [CrossRef]
- Dourado, D.M.; Rocha, M.L.; Carmo, J.P.P. Mach-Zehnder modulator modeling based on imec-ePixFab ISIPP25G SiPhotonics. In Proceedings of the 2018 SBFoton International Optics and Photonics Conference (SBFoton IOPC), Campinas, Brazil, 8–10 October 2018; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Anys Lumerical Multiphysics CHARGE. Available online: https://www.ansys.com/products/optics/Multiphysics (accessed on 25 January 2024).
- Soref, R.A.; Bennett, B.R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef]
- Morales-Bonilla, S.; Mercado-Zúñiga, C.; Campos-López, J.P.; Carrillo-Delgado, C.; Martínez-González, C.L.; Torres-Torres, C. Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures. Photonics 2020, 7, 54. [Google Scholar] [CrossRef]
- González-Andrade, D.; Wangüemert-Pérez, J.G.; Velasco, A.V.; Ortega-Monux, A.; Herrero-Bermello, A.; Molina-Fernández, I.; Halir, R.; Cheben, P. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Yin, K.; Gao, Y.; Shi, H.; Zhu, S. Inverse Design and Numerical Investigations of an Ultra-Compact Integrated Optical Switch Based on Phase Change Material. Nanomater 2023, 13, 1643. [Google Scholar] [CrossRef] [PubMed]
- El Shamy, R.S.; Afifi, A.E.; Badr, M.M.; Swillam, M.A. Modelling, characterization, and applications of silicon on insulator loop terminated asymmetric Mach Zehnder interferometer. Sci. Rep. 2022, 12, 3598. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akil, D.S.; Othman, M.A.; Sherif, S.M.; Swillam, M.A. Designing an Optical Router Based on a Multimode-Interference Silicon-On-Insulator Coupler with Tunable Power Transmittance. Photonics 2024, 11, 221. https://doi.org/10.3390/photonics11030221
Akil DS, Othman MA, Sherif SM, Swillam MA. Designing an Optical Router Based on a Multimode-Interference Silicon-On-Insulator Coupler with Tunable Power Transmittance. Photonics. 2024; 11(3):221. https://doi.org/10.3390/photonics11030221
Chicago/Turabian StyleAkil, Dana S., Muhammad A. Othman, Sherif M. Sherif, and Mohamed A. Swillam. 2024. "Designing an Optical Router Based on a Multimode-Interference Silicon-On-Insulator Coupler with Tunable Power Transmittance" Photonics 11, no. 3: 221. https://doi.org/10.3390/photonics11030221
APA StyleAkil, D. S., Othman, M. A., Sherif, S. M., & Swillam, M. A. (2024). Designing an Optical Router Based on a Multimode-Interference Silicon-On-Insulator Coupler with Tunable Power Transmittance. Photonics, 11(3), 221. https://doi.org/10.3390/photonics11030221